BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12580597)

  • 41. Energy barriers of proton transfer reactions between amino acid side chain analogs and water from ab initio calculations.
    Herzog E; Frigato T; Helms V; Lancaster CR
    J Comput Chem; 2006 Oct; 27(13):1534-47. PubMed ID: 16847935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins.
    Manikandan K; Ramakumar S
    Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 3. Calculation and parameterization of the potentials of mean force of pairs of identical hydrophobic side chains.
    Makowski M; Sobolewski E; Czaplewski C; Liwo A; Ołdziej S; No JH; Scheraga HA
    J Phys Chem B; 2007 Mar; 111(11):2925-31. PubMed ID: 17388418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation studies of the protein-water interface. I. Properties at the molecular resolution.
    Schröder C; Rudas T; Boresch S; Steinhauser O
    J Chem Phys; 2006 Jun; 124(23):234907. PubMed ID: 16821953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuum solvation models in the linear interaction energy method.
    Carlsson J; Andér M; Nervall M; Aqvist J
    J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Density functional theory based molecular-dynamics study of aqueous iodide solvation.
    Heuft JM; Meijer EJ
    J Chem Phys; 2005 Sep; 123(9):94506. PubMed ID: 16164352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amino acids at water-vapor interfaces: surface activity and orientational ordering.
    Vöhringer-Martinez E; Toro-Labbé A
    J Phys Chem B; 2010 Oct; 114(40):13005-10. PubMed ID: 20860377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of urea with amino acids: implications for urea-induced protein denaturation.
    Stumpe MC; Grubmüller H
    J Am Chem Soc; 2007 Dec; 129(51):16126-31. PubMed ID: 18047342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.
    Makowska J; Bagińska K; Kasprzykowski F; Vila JA; Jagielska A; Liwo A; Chmurzyński L; Scheraga HA
    Biopolymers; 2005; 80(2-3):214-24. PubMed ID: 15630705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA
    Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effective interaction potentials for alkali and alkaline earth metal ions in SPC/E water and polarization model of hydrated ions.
    Gavryushov S
    J Phys Chem B; 2006 Jun; 110(22):10888-95. PubMed ID: 16771341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane.
    Vorobyov I; Li L; Allen TW
    J Phys Chem B; 2008 Aug; 112(32):9588-602. PubMed ID: 18636764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effective energy function for proteins in lipid membranes.
    Lazaridis T
    Proteins; 2003 Aug; 52(2):176-92. PubMed ID: 12833542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implicit solvation based on generalized Born theory in different dielectric environments.
    Feig M; Im W; Brooks CL
    J Chem Phys; 2004 Jan; 120(2):903-11. PubMed ID: 15267926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole.
    Kaminski GA
    J Phys Chem B; 2005 Mar; 109(12):5884-90. PubMed ID: 16851640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. IV. Pairs of different hydrophobic side chains.
    Makowski M; Sobolewski E; Czaplewski C; Ołdziej S; Liwo A; Scheraga HA
    J Phys Chem B; 2008 Sep; 112(36):11385-95. PubMed ID: 18700740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Competition between intramolecular hydrogen bonds and solvation in phosphorylated peptides: simulations with explicit and implicit solvent.
    Wong SE; Bernacki K; Jacobson M
    J Phys Chem B; 2005 Mar; 109(11):5249-58. PubMed ID: 16863191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions of amino acid side-chain analogs within membrane environments.
    Mirjalili V; Feig M
    J Phys Chem B; 2015 Feb; 119(7):2877-85. PubMed ID: 25621811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.