BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1357 related articles for article (PubMed ID: 12580598)

  • 1. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information.
    Dominguez C; Boelens R; Bonvin AM
    J Am Chem Soc; 2003 Feb; 125(7):1731-7. PubMed ID: 12580598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filtering and selection of structural models: combining docking and NMR.
    Dobrodumov A; Gronenborn AM
    Proteins; 2003 Oct; 53(1):18-32. PubMed ID: 12945046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative use of chemical shifts for the modeling of protein complexes.
    Stratmann D; Boelens R; Bonvin AM
    Proteins; 2011 Sep; 79(9):2662-70. PubMed ID: 21744392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven docking for the study of biomolecular complexes.
    van Dijk AD; Boelens R; Bonvin AM
    FEBS J; 2005 Jan; 272(2):293-312. PubMed ID: 15654870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structure of cysteinyl-phosphorylated enzyme IIB of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.
    Ab E; Schuurman-Wolters GK; Nijlant D; Dijkstra K; Saier MH; Robillard GT; Scheek RM
    J Mol Biol; 2001 May; 308(5):993-1009. PubMed ID: 11352587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions.
    de Vries SJ; Melquiond AS; Kastritis PL; Karaca E; Bordogna A; van Dijk M; Rodrigues JP; Bonvin AM
    Proteins; 2010 Nov; 78(15):3242-9. PubMed ID: 20718048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven docking: HADDOCK's adventures in CAPRI.
    van Dijk AD; de Vries SJ; Dominguez C; Chen H; Zhou HX; Bonvin AM
    Proteins; 2005 Aug; 60(2):232-8. PubMed ID: 15981252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How much NMR data is required to determine a protein-ligand complex structure?
    Schieborr U; Vogtherr M; Elshorst B; Betz M; Grimme S; Pescatore B; Langer T; Saxena K; Schwalbe H
    Chembiochem; 2005 Oct; 6(10):1891-8. PubMed ID: 16013076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure determination of protein-protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity protein complex.
    Montalvao RW; Cavalli A; Salvatella X; Blundell TL; Vendruscolo M
    J Am Chem Soc; 2008 Nov; 130(47):15990-6. PubMed ID: 18980319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protein-specifically adapted scoring function for the reranking of docking solutions.
    Müller W; Sticht H
    Proteins; 2007 Apr; 67(1):98-111. PubMed ID: 17243180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D; Gohlke H
    J Chem Inf Model; 2009 Oct; 49(10):2260-71. PubMed ID: 19795907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets.
    de Vries SJ; van Dijk AD; Krzeminski M; van Dijk M; Thureau A; Hsu V; Wassenaar T; Bonvin AM
    Proteins; 2007 Dec; 69(4):726-33. PubMed ID: 17803234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints.
    Tang C; Clore GM
    J Biomol NMR; 2006 Sep; 36(1):37-44. PubMed ID: 16967193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient strategy for the determination of the three-dimensional architecture of ribonucleoprotein complexes by the combination of a few easily accessible NMR and biochemical data: intermolecular recognition in a U4 spliceosomal complex.
    Li P; Kirkpatrick J; Carlomagno T
    J Mol Biol; 2009 May; 388(2):283-98. PubMed ID: 19281818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR analysis of protein interactions.
    Bonvin AM; Boelens R; Kaptein R
    Curr Opin Chem Biol; 2005 Oct; 9(5):501-8. PubMed ID: 16122968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints.
    Loquet A; Bardiaux B; Gardiennet C; Blanchet C; Baldus M; Nilges M; Malliavin T; Böckmann A
    J Am Chem Soc; 2008 Mar; 130(11):3579-89. PubMed ID: 18284240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 68.