These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12581180)

  • 1. Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats.
    Reinecke S; Dinse HR; Reinke H; Witte OW
    Eur J Neurosci; 2003 Feb; 17(3):623-7. PubMed ID: 12581180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tactile impoverishment and sensorimotor restriction deteriorate the forepaw cutaneous map in the primary somatosensory cortex of adult rats.
    Coq JO; Xerri C
    Exp Brain Res; 1999 Dec; 129(4):518-31. PubMed ID: 10638426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the postlesion environment and chronic piracetam treatment on the organization of the somatotopic map in the rat primary somatosensory cortex after focal cortical injury.
    Xerri C; Zennou-Azogui Y
    Neuroscience; 2003; 118(1):161-77. PubMed ID: 12676147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical involvement in the induction, but not expression, of thalamic plasticity.
    Parker JL; Dostrovsky JO
    J Neurosci; 1999 Oct; 19(19):8623-9. PubMed ID: 10493762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits on plasticity in somatosensory cortex of adult rats: hindlimb cortex is not reactivated after dorsal column section.
    Jain N; Florence SL; Kaas JH
    J Neurophysiol; 1995 Apr; 73(4):1537-46. PubMed ID: 7643165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment.
    Coq JO; Xerri C
    Eur J Neurosci; 1999 Aug; 11(8):2597-608. PubMed ID: 10457159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ipsilateral and bilateral receptive fields in rat primary somatosensory cortex.
    Zarei M; Stephenson JD
    Neuroreport; 1996 Jan; 7(2):647-51. PubMed ID: 8730849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task.
    Recanzone GH; Merzenich MM; Jenkins WM; Grajski KA; Dinse HR
    J Neurophysiol; 1992 May; 67(5):1031-56. PubMed ID: 1597696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptive field scatter, topography and map variability in different layers of the hindpaw representation of rat somatosensory cortex.
    Haupt SS; Spengler F; Husemann R; Dinse HR
    Exp Brain Res; 2004 Apr; 155(4):485-99. PubMed ID: 14745463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of recovery of the somatosensory map following hindpaw sensory deprivation in the rat.
    Dupont E; Canu MH; Langlet C; Falempin M
    Neurosci Lett; 2001 Aug; 309(2):121-4. PubMed ID: 11502360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesions of mature barrel field cortex interfere with sensory processing and plasticity in connected areas of the contralateral hemisphere.
    Rema V; Ebner FF
    J Neurosci; 2003 Nov; 23(32):10378-87. PubMed ID: 14614097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent structural plasticity in cortex heterotopic to focal sensorimotor cortical damage.
    Chu CJ; Jones TA
    Exp Neurol; 2000 Dec; 166(2):403-14. PubMed ID: 11085905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term reorganization of the rat somatosensory cortex following hypodynamia-hypokinesia.
    Langlet C; Canu MH; Falempin M
    Neurosci Lett; 1999 May; 266(2):145-8. PubMed ID: 10353348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Five topographically organized fields in the somatosensory cortex of the flying fox: microelectrode maps, myeloarchitecture, and cortical modules.
    Krubitzer LA; Calford MB
    J Comp Neurol; 1992 Mar; 317(1):1-30. PubMed ID: 1573055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 14-day period of hindpaw sensory deprivation enhances the responsiveness of rat cortical neurons.
    Dupont E; Canu MH; Falempin M
    Neuroscience; 2003; 121(2):433-9. PubMed ID: 14522001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.
    Mysoet J; Dupont E; Bastide B; Canu MH
    Behav Brain Res; 2015 Sep; 290():117-23. PubMed ID: 25958232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats.
    Coq JO; Xerri C
    Exp Brain Res; 1998 Jul; 121(2):191-204. PubMed ID: 9696389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of infragranular neurons in the rat primary somatosensory cortex to forepaw and hindpaw tactile stimuli.
    Moxon KA; Hale LL; Aguilar J; Foffani G
    Neuroscience; 2008 Oct; 156(4):1083-92. PubMed ID: 18775766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys.
    Xerri C; Merzenich MM; Peterson BE; Jenkins W
    J Neurophysiol; 1998 Apr; 79(4):2119-48. PubMed ID: 9535973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral receptive field neurons in the hindlimb region of the postcentral somatosensory cortex in awake macaque monkeys.
    Taoka M; Toda T; Iriki A; Tanaka M; Iwamura Y
    Exp Brain Res; 2000 Sep; 134(2):139-46. PubMed ID: 11037280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.