BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12581203)

  • 1. Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain.
    Janecek S; Svensson B; MacGregor EA
    Eur J Biochem; 2003 Feb; 270(4):635-45. PubMed ID: 12581203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of starch-binding domain.
    Janecek S; Sevcík J
    FEBS Lett; 1999 Jul; 456(1):119-25. PubMed ID: 10452542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1.
    Wind RD; Buitelaar RM; Dijkhuizen L
    Eur J Biochem; 1998 May; 253(3):598-605. PubMed ID: 9654055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.
    Leemhuis H; Kragh KM; Dijkstra BW; Dijkhuizen L
    J Biotechnol; 2003 Aug; 103(3):203-12. PubMed ID: 12890607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability.
    Svensson B
    Plant Mol Biol; 1994 May; 25(2):141-57. PubMed ID: 8018865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.
    Janeček Š; Svensson B; MacGregor EA
    Cell Mol Life Sci; 2014 Apr; 71(7):1149-70. PubMed ID: 23807207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the domain-level organization of starch hydrolases and related enzymes.
    Jespersen HM; MacGregor EA; Sierks MR; Svensson B
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):51-5. PubMed ID: 1741756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases.
    Majzlová K; Pukajová Z; Janeček S
    Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57.
    Janeček S; Kuchtová A
    FEBS Lett; 2012 Sep; 586(19):3360-6. PubMed ID: 22819817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of the maltogenic alpha-amylase Novamyl into a CGTase.
    Beier L; Svendsen A; Andersen C; Frandsen TP; Borchert TV; Cherry JR
    Protein Eng; 2000 Jul; 13(7):509-13. PubMed ID: 10906346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies.
    Cihan AC; Yildiz ED; Sahin E; Mutlu O
    World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The starch-binding domain family CBM41-An in silico analysis of evolutionary relationships.
    Janeček Š; Majzlová K; Svensson B; MacGregor EA
    Proteins; 2017 Aug; 85(8):1480-1492. PubMed ID: 28425599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.
    Sumitani J; Tottori T; Kawaguchi T; Arai M
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The carbohydrate-binding module family 20--diversity, structure, and function.
    Christiansen C; Abou Hachem M; Janecek S; Viksø-Nielsen A; Blennow A; Svensson B
    FEBS J; 2009 Sep; 276(18):5006-29. PubMed ID: 19682075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Did cyclodextrin glycosyltransferases evolve from alpha-amylases?
    del-Rio G; Morett E; Soberon X
    FEBS Lett; 1997 Oct; 416(2):221-4. PubMed ID: 9369219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain evolution in enzymes of the neopullulanase subfamily.
    Kuchtová A; Janeček Š
    Microbiology (Reading); 2016 Dec; 162(12):2099-2115. PubMed ID: 27902421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases.
    Janeček Š; Martinovičová M
    Genetica; 2020 Apr; 148(2):77-86. PubMed ID: 32096055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the recognition of α-1,6-branched α-glucan by GH13_47 α-amylase from Rhodothermus marinus.
    Miyasaka Y; Yokoyama K; Kozono T; Kitano Y; Miyazaki T; Sakaguchi M; Nishikawa A; Tonozuka T
    Proteins; 2024 Aug; 92(8):984-997. PubMed ID: 38641972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and applications of starch-converting enzymes of the alpha-amylase family.
    van der Maarel MJ; van der Veen B; Uitdehaag JC; Leemhuis H; Dijkhuizen L
    J Biotechnol; 2002 Mar; 94(2):137-55. PubMed ID: 11796168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes.
    Jespersen HM; MacGregor EA; Henrissat B; Sierks MR; Svensson B
    J Protein Chem; 1993 Dec; 12(6):791-805. PubMed ID: 8136030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.