These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 12581350)

  • 61. Cell-cycle-regulated expression and subcellular localization of the Caulobacter crescentus SMC chromosome structural protein.
    Jensen RB; Shapiro L
    J Bacteriol; 2003 May; 185(10):3068-75. PubMed ID: 12730166
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus.
    Lawler ML; Brun YV
    Curr Opin Microbiol; 2007 Dec; 10(6):630-7. PubMed ID: 17997127
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2001 Jul; 41(1):117-30. PubMed ID: 11454205
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain.
    Paul R; Weiser S; Amiot NC; Chan C; Schirmer T; Giese B; Jenal U
    Genes Dev; 2004 Mar; 18(6):715-27. PubMed ID: 15075296
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Asymmetric expression of the gyrase B gene from the replication-competent chromosome in the Caulobacter crescentus predivisional cell.
    Rizzo MF; Shapiro L; Gober J
    J Bacteriol; 1993 Nov; 175(21):6970-81. PubMed ID: 8226640
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In-phase oscillation of global regulons is orchestrated by a pole-specific organizer.
    Janakiraman B; Mignolet J; Narayanan S; Viollier PH; Radhakrishnan SK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12550-12555. PubMed ID: 27791133
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis.
    Burton GJ; Hecht GB; Newton A
    J Bacteriol; 1997 Sep; 179(18):5849-53. PubMed ID: 9294444
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.
    Boyd CH; Gober JW
    J Bacteriol; 2001 Jan; 183(2):725-35. PubMed ID: 11133968
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape.
    Sundararajan K; Goley ED
    Subcell Biochem; 2017; 84():103-137. PubMed ID: 28500524
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development.
    Levi A; Jenal U
    J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Coordination of division and development influences complex multicellular behavior in Agrobacterium tumefaciens.
    Kim J; Heindl JE; Fuqua C
    PLoS One; 2013; 8(2):e56682. PubMed ID: 23437210
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A localized adaptor protein performs distinct functions at the
    Wang J; Moerner WE; Shapiro L
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753507
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Localization of surface structures during procaryotic differentiation: role of cell division in Caulobacter crescentus.
    Huguenel ED; Newton A
    Differentiation; 1982; 21(2):71-8. PubMed ID: 7084571
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein.
    Hughes HV; Lisher JP; Hardy GG; Kysela DT; Arnold RJ; Giedroc DP; Brun YV
    Mol Microbiol; 2013 Dec; 90(6):1162-77. PubMed ID: 24118129
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell.
    Jenal U; Shapiro L
    EMBO J; 1996 May; 15(10):2393-406. PubMed ID: 8665847
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A gene coding for a putative sigma 54 activator is developmentally regulated in Caulobacter crescentus.
    Marques MV; Gomes SL; Gober JW
    J Bacteriol; 1997 Sep; 179(17):5502-10. PubMed ID: 9287006
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus.
    Skerker JM; Shapiro L
    EMBO J; 2000 Jul; 19(13):3223-34. PubMed ID: 10880436
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation.
    Jensen RB; Shapiro L
    Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10661-6. PubMed ID: 10485882
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator.
    Ohta N; Newton A
    J Bacteriol; 2003 Aug; 185(15):4424-31. PubMed ID: 12867451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.