BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 12581654)

  • 21. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler.
    Sinha KK; Gross JD; Narlikar GJ
    Science; 2017 Jan; 355(6322):. PubMed ID: 28104838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF.
    Torigoe SE; Urwin DL; Ishii H; Smith DE; Kadonaga JT
    Mol Cell; 2011 Aug; 43(4):638-48. PubMed ID: 21855802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity.
    Hondele M; Ladurner AG
    Curr Opin Struct Biol; 2011 Dec; 21(6):698-708. PubMed ID: 22054910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone octamer rearranges to adapt to DNA unwrapping.
    Bilokapic S; Strauss M; Halic M
    Nat Struct Mol Biol; 2018 Jan; 25(1):101-108. PubMed ID: 29323273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility.
    Morrison EA; Baweja L; Poirier MG; Wereszczynski J; Musselman CA
    Nucleic Acids Res; 2021 May; 49(8):4750-4767. PubMed ID: 33856458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breaths, Twists, and Turns of Atomistic Nucleosomes.
    Huertas J; Cojocaru V
    J Mol Biol; 2021 Mar; 433(6):166744. PubMed ID: 33309853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histone dynamics mediate DNA unwrapping and sliding in nucleosomes.
    Armeev GA; Kniazeva AS; Komarova GA; Kirpichnikov MP; Shaytan AK
    Nat Commun; 2021 Apr; 12(1):2387. PubMed ID: 33888707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA recognition and nucleosome organization.
    Travers A; Drew H
    Biopolymers; 1997; 44(4):423-33. PubMed ID: 9782778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT.
    Hondele M; Stuwe T; Hassler M; Halbach F; Bowman A; Zhang ET; Nijmeijer B; Kotthoff C; Rybin V; Amlacher S; Hurt E; Ladurner AG
    Nature; 2013 Jul; 499(7456):111-4. PubMed ID: 23698368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison between the CENP-A and histone H3 structures in nucleosomes.
    Tachiwana H; Kagawa W; Kurumizaka H
    Nucleus; 2012; 3(1):6-11. PubMed ID: 22127263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two distinct nucleosome assembly pathways: dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes.
    Nakatani Y; Ray-Gallet D; Quivy JP; Tagami H; Almouzni G
    Cold Spring Harb Symp Quant Biol; 2004; 69():273-80. PubMed ID: 16117659
    [No Abstract]   [Full Text] [Related]  

  • 34. A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT.
    Mao P; Kyriss MN; Hodges AJ; Duan M; Morris RT; Lavine MD; Topping TB; Gloss LM; Wyrick JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9142-9152. PubMed ID: 27369377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin assembly: a basic recipe with various flavours.
    Polo SE; Almouzni G
    Curr Opin Genet Dev; 2006 Apr; 16(2):104-11. PubMed ID: 16504499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone structure and nucleosome stability.
    Mariño-Ramírez L; Kann MG; Shoemaker BA; Landsman D
    Expert Rev Proteomics; 2005 Oct; 2(5):719-29. PubMed ID: 16209651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.
    Huang H; Strømme CB; Saredi G; Hödl M; Strandsby A; González-Aguilera C; Chen S; Groth A; Patel DJ
    Nat Struct Mol Biol; 2015 Aug; 22(8):618-26. PubMed ID: 26167883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and dynamic properties of nucleosome core particles.
    Chakravarthy S; Park YJ; Chodaparambil J; Edayathumangalam RS; Luger K
    FEBS Lett; 2005 Feb; 579(4):895-8. PubMed ID: 15680970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I.
    Okuwaki M; Kato K; Shimahara H; Tate S; Nagata K
    Mol Cell Biol; 2005 Dec; 25(23):10639-51. PubMed ID: 16287874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the nucleosome core particle at 2.8 A resolution.
    Luger K; Mäder AW; Richmond RK; Sargent DF; Richmond TJ
    Nature; 1997 Sep; 389(6648):251-60. PubMed ID: 9305837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.