BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12581659)

  • 1. RNA-modifying enzymes.
    Ferré-D'Amaré AR
    Curr Opin Struct Biol; 2003 Feb; 13(1):49-55. PubMed ID: 12581659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate recognition by RNA 5-methyluridine methyltransferases and pseudouridine synthases: a structural perspective.
    Hur S; Stroud RM; Finer-Moore J
    J Biol Chem; 2006 Dec; 281(51):38969-73. PubMed ID: 17085441
    [No Abstract]   [Full Text] [Related]  

  • 3. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I.
    Foster PG; Huang L; Santi DV; Stroud RM
    Nat Struct Biol; 2000 Jan; 7(1):23-7. PubMed ID: 10625422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudouridine synthases.
    Hamma T; Ferré-D'Amaré AR
    Chem Biol; 2006 Nov; 13(11):1125-35. PubMed ID: 17113994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How U38, 39, and 40 of many tRNAs become the targets for pseudouridylation by TruA.
    Hur S; Stroud RM
    Mol Cell; 2007 Apr; 26(2):189-203. PubMed ID: 17466622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA.
    Patton JR; Padgett RW
    Biochem J; 2003 Jun; 372(Pt 2):595-602. PubMed ID: 12597772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In human pseudouridine synthase 1 (hPus1), a C-terminal helical insert blocks tRNA from binding in the same orientation as in the Pus1 bacterial homologue TruA, consistent with their different target selectivities.
    Czudnochowski N; Wang AL; Finer-Moore J; Stroud RM
    J Mol Biol; 2013 Oct; 425(20):3875-87. PubMed ID: 23707380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme.
    Ishitani R; Nureki O; Nameki N; Okada N; Nishimura S; Yokoyama S
    Cell; 2003 May; 113(3):383-94. PubMed ID: 12732145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure.
    Hoang C; Chen J; Vizthum CA; Kandel JM; Hamilton CS; Mueller EG; Ferré-D'Amaré AR
    Mol Cell; 2006 Nov; 24(4):535-45. PubMed ID: 17188032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10.
    Kamalampeta R; Keffer-Wilkes LC; Kothe U
    J Mol Biol; 2013 Oct; 425(20):3863-74. PubMed ID: 23743107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudouridines and pseudouridine synthases of the ribosome.
    Ofengand J; Malhotra A; Remme J; Gutgsell NS; Del Campo M; Jean-Charles S; Peil L; Kaya Y
    Cold Spring Harb Symp Quant Biol; 2001; 66():147-59. PubMed ID: 12762017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudouridine synthase 3 from mouse modifies the anticodon loop of tRNA.
    Chen J; Patton JR
    Biochemistry; 2000 Oct; 39(41):12723-30. PubMed ID: 11027153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudouridine in RNA: what, where, how, and why.
    Charette M; Gray MW
    IUBMB Life; 2000 May; 49(5):341-51. PubMed ID: 10902565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Determinants for 23S rRNA Recognition and Modification by the E. coli Pseudouridine Synthase RluE.
    Tillault AS; Schultz SK; Wieden HJ; Kothe U
    J Mol Biol; 2018 Apr; 430(9):1284-1294. PubMed ID: 29555553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism.
    Stengl B; Reuter K; Klebe G
    Chembiochem; 2005 Nov; 6(11):1926-39. PubMed ID: 16206323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial activity is seen with many substitutions of highly conserved active site residues in human Pseudouridine synthase 1.
    Sibert BS; Fischel-Ghodsian N; Patton JR
    RNA; 2008 Sep; 14(9):1895-906. PubMed ID: 18648068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design.
    Brenk R; Stubbs MT; Heine A; Reuter K; Klebe G
    Chembiochem; 2003 Oct; 4(10):1066-77. PubMed ID: 14523925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of aspartic acid 143 in E. coli tRNA-guanine transglycosylase: insights from mutagenesis studies and computational modeling.
    Todorov KA; Tan XJ; Nonekowski ST; Garcia GA; Carlson HA
    Biophys J; 2005 Sep; 89(3):1965-77. PubMed ID: 15951383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative approach combining noncovalent mass spectrometry, enzyme kinetics and X-ray crystallography to decipher Tgt protein-protein and protein-RNA interaction.
    Ritschel T; Atmanene C; Reuter K; Van Dorsselaer A; Sanglier-Cianferani S; Klebe G
    J Mol Biol; 2009 Nov; 393(4):833-47. PubMed ID: 19627989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.