BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12582043)

  • 1. Cerebellar mechanisms in eyeblink conditioning.
    Attwell PJ; Ivarsson M; Millar L; Yeo CH
    Ann N Y Acad Sci; 2002 Dec; 978():79-92. PubMed ID: 12582043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI.
    Attwell PJ; Rahman S; Yeo CH
    J Neurosci; 2001 Aug; 21(15):5715-22. PubMed ID: 11466443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blocking GABAA neurotransmission in the interposed nuclei: effects on conditioned and unconditioned eyeblinks.
    Parker KL; Zbarska S; Carrel AJ; Bracha V
    Brain Res; 2009 Oct; 1292():25-37. PubMed ID: 19635470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity.
    Aksenov D; Serdyukova N; Irwin K; Bracha V
    J Neurophysiol; 2004 Feb; 91(2):719-27. PubMed ID: 14573551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupted topography of the acquired trace-conditioned eyeblink responses in guinea pigs after suppression of cerebellar cortical inhibition to the interpositus nucleus.
    Hu B; Chen H; Feng H; Zeng Y; Yang L; Fan ZL; Wu YM; Sui JF
    Brain Res; 2010 Jun; 1337():41-55. PubMed ID: 20381463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of cerebellar output axons impairs acquisition of conditioned eyeblinks.
    Nilaweera WU; Zenitsky GD; Bracha V
    Brain Res; 2006 Nov; 1122(1):143-53. PubMed ID: 17067561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferior olivary inactivation abolishes conditioned eyeblinks: extinction or cerebellar malfunction?
    Zbarska S; Holland EA; Bloedel JR; Bracha V
    Behav Brain Res; 2007 Mar; 178(1):128-38. PubMed ID: 17222920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar cortical inhibition and classical eyeblink conditioning.
    Bao S; Chen L; Kim JJ; Thompson RF
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1592-7. PubMed ID: 11805298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses.
    Kalmbach BE; Davis T; Ohyama T; Riusech F; Nores WL; Mauk MD
    J Neurophysiol; 2010 Apr; 103(4):2039-49. PubMed ID: 20130039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivating the middle cerebellar peduncle abolishes the expression of short-latency conditioned eyeblinks.
    Parker KL; Bracha V
    Brain Res; 2009 Dec; 1303():32-8. PubMed ID: 19747462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response.
    McCormick DA; Thompson RF
    J Neurosci; 1984 Nov; 4(11):2811-22. PubMed ID: 6502205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity.
    Aksenov DP; Serdyukova NA; Bloedel JR; Bracha V
    J Neurophysiol; 2005 Jan; 93(1):44-52. PubMed ID: 15331619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response.
    Burhans LB; Schreurs BG
    Neurobiol Learn Mem; 2018 Nov; 155():143-156. PubMed ID: 30053576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning.
    Freeman JH; Steinmetz AB
    Learn Mem; 2011; 18(10):666-77. PubMed ID: 21969489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the role of inferior olivary sensory signaling in the expression of conditioned eyeblinks using a combined glutamate/GABAA receptor antagonist protocol.
    Zbarska S; Bracha V
    J Neurophysiol; 2012 Jan; 107(1):273-82. PubMed ID: 21975449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex.
    Mostofi A; Holtzman T; Grout AS; Yeo CH; Edgley SA
    J Neurosci; 2010 Jun; 30(26):8920-34. PubMed ID: 20592214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate cerebellum and conditioned eyeblinks. Parallel involvement in eyeblinks and tonic eyelid closure.
    Bracha V; Zhao L; Irwin K; Bloedel JR
    Exp Brain Res; 2001 Jan; 136(1):41-9. PubMed ID: 11204412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar dysfunction explains the extinction-like abolition of conditioned eyeblinks after NBQX injections in the inferior olive.
    Zbarska S; Bloedel JR; Bracha V
    J Neurosci; 2008 Jan; 28(1):10-20. PubMed ID: 18171918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission.
    Wada N; Kishimoto Y; Watanabe D; Kano M; Hirano T; Funabiki K; Nakanishi S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16690-5. PubMed ID: 17923666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.
    Kalmbach BE; Ohyama T; Mauk MD
    J Neurophysiol; 2010 Aug; 104(2):627-40. PubMed ID: 20484534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.