These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12582126)

  • 41.
    Urquhart AS; Vogan AA; Gardiner DM; Idnurm A
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2214521120. PubMed ID: 37023132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons.
    Stokes HW; Hall RM
    Mol Microbiol; 1989 Dec; 3(12):1669-83. PubMed ID: 2560119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways.
    Liu W; Tuck LR; Wright JM; Cai Y
    Methods Mol Biol; 2017; 1642():285-302. PubMed ID: 28815507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs.
    Kapitonov VV; Makarova KS; Koonin EV
    J Bacteriol; 2015 Dec; 198(5):797-807. PubMed ID: 26712934
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule.
    Bannam TL; Crellin PK; Rood JI
    Mol Microbiol; 1995 May; 16(3):535-51. PubMed ID: 7565113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transposition of hAT elements links transposable elements and V(D)J recombination.
    Zhou L; Mitra R; Atkinson PW; Hickman AB; Dyda F; Craig NL
    Nature; 2004 Dec; 432(7020):995-1001. PubMed ID: 15616554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation.
    Lobanov AV; Heaphy SM; Turanov AA; Gerashchenko MV; Pucciarelli S; Devaraj RR; Xie F; Petyuk VA; Smith RD; Klobutcher LA; Atkins JF; Miceli C; Hatfield DL; Baranov PV; Gladyshev VN
    Nat Struct Mol Biol; 2017 Jan; 24(1):61-68. PubMed ID: 27870834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi.
    Goodwin TJD; Butler MI; Poulter RTM
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3099-3109. PubMed ID: 14600222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12.
    Blakely G; May G; McCulloch R; Arciszewska LK; Burke M; Lovett ST; Sherratt DJ
    Cell; 1993 Oct; 75(2):351-61. PubMed ID: 8402918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nucleotide sequence of diatom plasmids: identification of open reading frames with similarity to site-specific recombinases.
    Hildebrand M; Hasegawa P; Ord RW; Thorpe VS; Glass CA; Volcani BE
    Plant Mol Biol; 1992 Aug; 19(5):759-70. PubMed ID: 1322740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The transposable elements resident on the plasmids of Pseudomonas putida strain H, Tn5501 and Tn5502, are cryptic transposons of the Tn3 family.
    Lauf U; Müller C; Herrmann H
    Mol Gen Genet; 1998 Oct; 259(6):674-8. PubMed ID: 9819061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens.
    Lyras D; Storie C; Huggins AS; Crellin PK; Bannam TL; Rood JI
    Antimicrob Agents Chemother; 1998 Jul; 42(7):1563-7. PubMed ID: 9660983
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Tn3-family of Replicative Transposons.
    Nicolas E; Lambin M; Dandoy D; Galloy C; Nguyen N; Oger CA; Hallet B
    Microbiol Spectr; 2015 Aug; 3(4):. PubMed ID: 26350313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases.
    Voziyanova E; Anderson RP; Voziyanov Y
    Methods Mol Biol; 2017; 1642():53-67. PubMed ID: 28815493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point.
    Hall RM; Brookes DE; Stokes HW
    Mol Microbiol; 1991 Aug; 5(8):1941-59. PubMed ID: 1662753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Kw recombinase, an integrase from Kluyveromyces waltii.
    Ringrose L; Angrand PO; Stewart AF
    Eur J Biochem; 1997 Sep; 248(3):903-12. PubMed ID: 9342245
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DIRS-1 and the other tyrosine recombinase retrotransposons.
    Poulter RT; Goodwin TJ
    Cytogenet Genome Res; 2005; 110(1-4):575-88. PubMed ID: 16093711
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX.
    Wang H; Roberts AP; Lyras D; Rood JI; Wilks M; Mullany P
    J Bacteriol; 2000 Jul; 182(13):3775-83. PubMed ID: 10850994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resolution of Mismatched Overlap Holliday Junction Intermediates by the Tyrosine Recombinase IntDOT.
    Ringwald K; Yoneji S; Gardner J
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28242723
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two frameshift products involved in the transposition of bacterial insertion sequence IS629.
    Chen CC; Hu ST
    J Biol Chem; 2006 Aug; 281(31):21617-21628. PubMed ID: 16731525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.