These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12582142)

  • 21. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural correlates of novelty detection in pulse-type weakly electric fish.
    Grau HJ; Bastian J
    J Comp Physiol A; 1986 Aug; 159(2):191-200. PubMed ID: 3761224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii.
    Fechner S; Grant K; von der Emde G; Engelmann J
    PLoS One; 2018; 13(4):e0194347. PubMed ID: 29641541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity.
    Bell CC; Grant K
    J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The active electrosensory range of Gymnotus omarorum.
    Pereira AC; Aguilera P; Caputi AA
    J Exp Biol; 2012 Sep; 215(Pt 18):3266-80. PubMed ID: 22915713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peripheral electrosensory imaging by weakly electric fish.
    Caputi AA; Budelli R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):587-600. PubMed ID: 16501980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.
    Roberts PD
    J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Descending pathways generate perception of and neural responses to weak sensory input.
    Metzen MG; Huang CG; Chacron MJ
    PLoS Biol; 2018 Jun; 16(6):e2005239. PubMed ID: 29939982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fish geometry and electric organ discharge determine functional organization of the electrosensory epithelium.
    Sanguinetti-Scheck JI; Pedraja EF; Cilleruelo E; Migliaro A; Aguilera P; Caputi AA; Budelli R
    PLoS One; 2011; 6(11):e27470. PubMed ID: 22096578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli.
    Mohr C; Roberts PD; Bell CC
    J Neurophysiol; 2003 Aug; 90(2):1193-210. PubMed ID: 12904505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of global electrosensory signals on motion processing in the midbrain of Eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):865-72. PubMed ID: 16001182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish.
    Comas V; Borde M
    J Neurophysiol; 2010 Oct; 104(4):2147-57. PubMed ID: 20719924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off.
    Nogueira J; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2380-92. PubMed ID: 23761463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time disparity sensitive behavior and its neural substrates of a pulse-type gymnotiform electric fish, Brachyhypopomus gauderio.
    Matsushita A; Pyon G; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jul; 199(7):583-99. PubMed ID: 23250197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioral responses to jamming and 'phantom' jamming stimuli in the weakly electric fish Eigenmannia.
    Carlson BA; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Sep; 193(9):927-41. PubMed ID: 17609965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active electrolocation in pulse gymnotids: sensory consequences of objects' mutual polarization.
    Aguilera PA; Pereira AC; Caputi AA
    J Exp Biol; 2012 May; 215(Pt 9):1533-41. PubMed ID: 22496290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
    Salazar VL; Krahe R; Lewis JE
    J Exp Biol; 2013 Jul; 216(Pt 13):2459-68. PubMed ID: 23761471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.