These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12582142)

  • 41. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli.
    Goenechea L; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):907-22. PubMed ID: 15349745
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.
    Stamper SA; Madhav MS; Cowan NJ; Fortune ES
    J Exp Biol; 2012 Dec; 215(Pt 23):4196-207. PubMed ID: 23136154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A role of synchronicity of neural activity based on dynamic plasticity of synapses in encoding spatiotemporal features of electrosensory stimuli.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Math Biosci; 2006 May; 201(1-2):113-24. PubMed ID: 16504215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Noise autocorrelation and jamming avoidance performance in pulse type electric fish.
    Capurro A; Malta CP
    Bull Math Biol; 2004 Jul; 66(4):885-905. PubMed ID: 15210325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Encoding of social signals in all three electrosensory pathways of Eigenmannia virescens.
    Stöckl A; Sinz F; Benda J; Grewe J
    J Neurophysiol; 2014 Nov; 112(9):2076-91. PubMed ID: 25098964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated pulse discrimination of two freely-swimming weakly electric fish and analysis of their electrical behavior during dominance contest.
    Guariento RT; Mosqueiro TS; Matias P; Cesarino VB; Almeida LOB; Slaets JFW; Maia LP; Pinto RD
    J Physiol Paris; 2016 Oct; 110(3 Pt B):216-223. PubMed ID: 28188835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From stimulus encoding to feature extraction in weakly electric fish.
    Gabbiani F; Metzner W; Wessel R; Koch C
    Nature; 1996 Dec; 384(6609):564-7. PubMed ID: 8955269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the haptic nature of the active electric sense of fish.
    Caputi AA; Aguilera PA; Carolina Pereira A; Rodríguez-Cattáneo A
    Brain Res; 2013 Nov; 1536():27-43. PubMed ID: 23727613
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Agonistic-like responses from the torus semicircularis dorsalis elicited by GABA(A) blockade in the weakly electric fish Gymnotus carapo.
    Duarte TT; Corrêa SA; Santana UJ; Pereira AS; Hoffmann A
    Braz J Med Biol Res; 2006 Jul; 39(7):945-55. PubMed ID: 16862286
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neuronal responses to electrosensory input in mormyrid valvula cerebelli.
    Russell CJ; Bell CC
    J Neurophysiol; 1978 Nov; 41(6):1495-1510. PubMed ID: 731287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum.
    Pedraja F; Perrone R; Silva A; Budelli R
    Bioinspir Biomim; 2016 Oct; 11(6):065002. PubMed ID: 27767014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature sensitivity of the electric organ discharge waveform in Gymnotus carapo.
    Ardanaz JL; Silva A; Macadar O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2001 Dec; 187(11):853-64. PubMed ID: 11866184
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electric imaging through evolution, a modeling study of commonalities and differences.
    Pedraja F; Aguilera P; Caputi AA; Budelli R
    PLoS Comput Biol; 2014 Jul; 10(7):e1003722. PubMed ID: 25010765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Task-specific sensory coding strategies are matched to detection and discrimination performance.
    Allen KM; Marsat G
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29444842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mormyromast region of the mormyrid electrosensory lobe. II. Responses to input from central sources.
    Mohr C; Roberts PD; Bell CC
    J Neurophysiol; 2003 Aug; 90(2):1211-23. PubMed ID: 12904506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.