These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12582150)

  • 1. Leg morphology and locomotion in birds: requirements for force and speed during ankle flexion.
    Zeffer A; Norberg UM
    J Exp Biol; 2003 Mar; 206(Pt 6):1085-97. PubMed ID: 12582150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors.
    Daley MA; Biewener AA
    J Exp Biol; 2003 Sep; 206(Pt 17):2941-58. PubMed ID: 12878663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.
    Aminiaghdam S; Rode C; Müller R; Blickhan R
    J Exp Biol; 2017 Feb; 220(Pt 3):478-486. PubMed ID: 27888201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To Hop or Not to Hop? The Answer Is in the Bird Trees.
    Provini P; Höfling E
    Syst Biol; 2020 Sep; 69(5):962-972. PubMed ID: 32101317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pedestrian locomotion energetics and gait characteristics of a diving bird, the great cormorant, Phalacrocorax carbo.
    White CR; Martin GR; Butler PJ
    J Comp Physiol B; 2008 Aug; 178(6):745-54. PubMed ID: 18575869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae.
    Hinić-Frlog S; Motani R
    J Evol Biol; 2010 Feb; 23(2):372-85. PubMed ID: 20021550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics.
    Gilbert MM; Snively E; Cotton J
    PLoS One; 2016; 11(3):e0149708. PubMed ID: 27015416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.
    O'Neill MC; Lee LF; Larson SG; Demes B; Stern JT; Umberger BR
    J Exp Biol; 2013 Oct; 216(Pt 19):3709-23. PubMed ID: 24006347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between energy expenditure and speed during pedestrian locomotion in birds: a morphological basis for the elevated y-intercept?
    Halsey LG
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jun; 165(2):295-8. PubMed ID: 23545444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Select forelimb muscles have evolved superfast contractile speed to support acrobatic social displays.
    Fuxjager MJ; Goller F; Dirkse A; Sanin GD; Garcia S
    Elife; 2016 Apr; 5():e13544. PubMed ID: 27067379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phylogeny and locomotor style on the allometry of body mass and pelvic dimensions in birds.
    Anten-Houston MV; Ruta M; Deeming DC
    J Anat; 2017 Sep; 231(3):342-358. PubMed ID: 28660634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soldier-relevant loads impact lower limb biomechanics during anticipated and unanticipated single-leg cutting movements.
    Brown TN; O'Donovan M; Hasselquist L; Corner B; Schiffman JM
    J Biomech; 2014 Nov; 47(14):3494-501. PubMed ID: 25257813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Built for speed: musculoskeletal structure and sprinting ability.
    Lee SS; Piazza SJ
    J Exp Biol; 2009 Nov; 212(Pt 22):3700-7. PubMed ID: 19880732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical analysis of the scaling of force and power production by dragonfly flight motors.
    Schilder RJ; Marden JH
    J Exp Biol; 2004 Feb; 207(Pt 5):767-76. PubMed ID: 14747409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow for bone remodelling correlates with locomotion in living and extinct birds.
    Allan GH; Cassey P; Snelling EP; Maloney SK; Seymour RS
    J Exp Biol; 2014 Aug; 217(Pt 16):2956-62. PubMed ID: 24902751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs.
    Chan NR
    Proc Biol Sci; 2017 Oct; 284(1865):. PubMed ID: 29046377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.
    Ali N; Andersen MS; Rasmussen J; Robertson DG; Rouhi G
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1602-16. PubMed ID: 23387967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terror birds on the run: a mechanical model to estimate its maximum running speed.
    Blanco RE; Jones WW
    Proc Biol Sci; 2005 Sep; 272(1574):1769-73. PubMed ID: 16096087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.