These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12582261)

  • 1. A yeast-based growth assay for the analysis of site-specific proteases.
    Köhler F
    Nucleic Acids Res; 2003 Feb; 31(4):e16. PubMed ID: 12582261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A co-localization assay for the analysis of protein-protein interactions.
    Köhler F
    Gene; 2007 Feb; 388(1-2):14-8. PubMed ID: 17157449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae.
    Busti S; Sacco E; Martegani E; Vanoni M
    Curr Genet; 2008 Mar; 53(3):153-62. PubMed ID: 18183397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.
    van Aelst L; Jans AW; Thevelein JM
    J Gen Microbiol; 1991 Feb; 137(2):341-9. PubMed ID: 1849965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast growth selection system for detecting activity and inhibition of dimerization-dependent receptor tyrosine kinase.
    Gunde T; Barberis A
    Biotechniques; 2005 Oct; 39(4):541-9. PubMed ID: 16235566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glucose-induced CDC25- and RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.
    Thevelein JM; Beullens M; Mbonyi K; Van Aelst L
    Yeast; 1989 Apr; 5 Spec No():S421-5. PubMed ID: 2546336
    [No Abstract]   [Full Text] [Related]  

  • 7. Adaptation of the Ras-recruitment system to the analysis of interactions between membrane-associated proteins.
    Köhler F; Müller KM
    Nucleic Acids Res; 2003 Mar; 31(6):e28. PubMed ID: 12626727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent of cAMP levels.
    Oehlen LJ; Scholte ME; de Koning W; van Dam K
    J Gen Microbiol; 1993 Sep; 139(9):2091-100. PubMed ID: 8245836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport.
    Silljé HH; ter Schure EG; Verkleij AJ; Boonstra J; Verrips CT
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1765-73. PubMed ID: 8757740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein recruitment systems for the analysis of protein +/- protein interactions.
    Aronheim A
    Methods; 2001 May; 24(1):29-34. PubMed ID: 11327799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for the identification of protein-protein interaction with integral membrane proteins.
    Hubsman M; Yudkovsky G; Aronheim A
    Nucleic Acids Res; 2001 Feb; 29(4):E18. PubMed ID: 11160938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The budding yeast RasGEF Cdc25 reveals an unexpected nuclear localization.
    Tisi R; Belotti F; Paiardi C; Brunetti F; Martegani E
    Biochim Biophys Acta; 2008 Dec; 1783(12):2363-74. PubMed ID: 18930081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae.
    Colombo S; Ma P; Cauwenberg L; Winderickx J; Crauwels M; Teunissen A; Nauwelaers D; de Winde JH; Gorwa MF; Colavizza D; Thevelein JM
    EMBO J; 1998 Jun; 17(12):3326-41. PubMed ID: 9628870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae.
    Wei W; Mosteller RD; Sanyal P; Gonzales E; McKinney D; Dasgupta C; Li P; Liu BX; Broek D
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7100-4. PubMed ID: 1379731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation.
    Paiardi C; Belotti F; Colombo S; Tisi R; Martegani E
    FEMS Yeast Res; 2007 Dec; 7(8):1270-5. PubMed ID: 17727662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast.
    Belotti F; Tisi R; Paiardi C; Groppi S; Martegani E
    FEBS Lett; 2011 Dec; 585(24):3914-20. PubMed ID: 22036786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.
    Satomura A; Miura N; Kuroda K; Ueda M
    Sci Rep; 2016 Mar; 6():23157. PubMed ID: 26984760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae.
    Wang L; Renault G; Garreau H; Jacquet M
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3383-91. PubMed ID: 15470116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras.
    Gross E; Goldberg D; Levitzki A
    Nature; 1992 Dec 24-31; 360(6406):762-5. PubMed ID: 1334534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae.
    Mösch HU; Kübler E; Krappmann S; Fink GR; Braus GH
    Mol Biol Cell; 1999 May; 10(5):1325-35. PubMed ID: 10233147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.