These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12582809)

  • 21. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histology of the regenerate and docking site in bone transport.
    Garcia FL; Picado CH; Garcia SB
    Arch Orthop Trauma Surg; 2009 Apr; 129(4):549-58. PubMed ID: 18297297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The histology of distraction osteogenesis using different external fixators.
    Aronson J; Harrison BH; Stewart CL; Harp JH
    Clin Orthop Relat Res; 1989 Apr; (241):106-16. PubMed ID: 2924454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Split free flap and monofixator distraction osteogenesis for leg reconstruction.
    Delaere OP; Barbier OJ
    Plast Reconstr Surg; 2000 Jan; 105(1):178-82. PubMed ID: 10626989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone transport with an external fixator and a locking plate for segmental tibial defects.
    Oh CW; Apivatthakakul T; Oh JK; Kim JW; Lee HJ; Kyung HS; Baek SG; Jung GH
    Bone Joint J; 2013 Dec; 95-B(12):1667-72. PubMed ID: 24293598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histological study of the docking site after bone transport. Temporal evolution in a sheep model.
    López-Pliego EM; Mora-Macías J; Giráldez-Sánchez MÁ; Domínguez J; Reina-Romo E
    Injury; 2018 Nov; 49(11):1987-1992. PubMed ID: 30243653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unifocal internal and external bone lengthening with circular external skeletal fixator in 5 dogs.
    Captug O; Bilgili H; Kurum B
    Pol J Vet Sci; 2008; 11(2):159-73. PubMed ID: 18683547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The treatment of comminuted midfoot fractures with distraction osteogenesis].
    Demiralp B; Kürklü M; Bek D; Yurttaş Y; Ateşalp AS
    Acta Orthop Traumatol Turc; 2004; 38(2):130-5. PubMed ID: 15129032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distraction Osteogenesis Technique for the Management of a Gustillo Type I Tibial Shaft Fracture Initially Managed with an Intramedullary Nail Device.
    Tsiotsias A; Maris SJ; Angelis S; Pernientakis S; Vasilopoulou A; Filippou DK; Papanikolaou A; Apostolopoulos AP
    J Long Term Eff Med Implants; 2021; 31(3):63-67. PubMed ID: 34369724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distraction osteogenesis versus induced membrane technique for infected tibial non-unions with segmental bone loss: a systematic review of the literature and meta-analysis of available studies.
    Wakefield SM; Papakostidis C; Giannoudis VP; Mandía-Martínez A; Giannoudis PV
    Eur J Trauma Emerg Surg; 2024 Jun; 50(3):705-721. PubMed ID: 37921889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The effect of definitive continuous distraction employed with the Ilizarov type external fixation system on fracture healing: an experimental rabbit model].
    Korkmaz M; Oztürk H; Bulut O; Unsaldi T; Kaloğlu C
    Acta Orthop Traumatol Turc; 2005; 39(3):247-57. PubMed ID: 16141732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distraction osteogenesis through high energy fractures.
    Atkins RM; Sudhakar JE; Porteous AJ
    Injury; 1998 Sep; 29(7):535-7. PubMed ID: 10193497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does Integrated Fixation Provide Benefit in the Reconstruction of Posttraumatic Tibial Bone Defects?
    Bernstein M; Fragomen AT; Sabharwal S; Barclay J; Rozbruch SR
    Clin Orthop Relat Res; 2015 Oct; 473(10):3143-53. PubMed ID: 25940337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia].
    Veselý R; Procházka V
    Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of modified Ilizarov olive wires as pushing wires.
    Atkins RM; Sudhakar JE; Porteous AJ
    J Orthop Trauma; 1998 Aug; 12(6):436-8. PubMed ID: 9715454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical course, complication rate and outcome of segmental resection and distraction osteogenesis after chronic tibial osteitis.
    Spiegl U; Pätzold R; Friederichs J; Hungerer S; Militz M; Bühren V
    Injury; 2013 Aug; 44(8):1049-56. PubMed ID: 23747125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acute treatment of segmental tibial fractures with the Ilizarov method.
    Oztürkmen Y; Karamehmetoğlu M; Karadeniz H; Azboy I; Caniklioğlu M
    Injury; 2009 Mar; 40(3):321-6. PubMed ID: 19243774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis.
    Ozkan K; Eralp L; Kocaoglu M; Ahishali B; Bilgic B; Mutlu Z; Turker M; Ozkan FU; Sahin K; Guven M
    Growth Factors; 2007 Apr; 25(2):101-7. PubMed ID: 17891595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three modes of ossification during distraction osteogenesis in the rat.
    Yasui N; Sato M; Ochi T; Kimura T; Kawahata H; Kitamura Y; Nomura S
    J Bone Joint Surg Br; 1997 Sep; 79(5):824-30. PubMed ID: 9331045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.