BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12582826)

  • 1. Temporal precision of interceptive action: differential effects of target size and speed.
    Tresilian R; Oliver J; Carroll J
    Exp Brain Res; 2003 Feb; 148(4):425-38. PubMed ID: 12582826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hitting moving targets with a continuously changing temporal window.
    de la Malla C; López-Moliner J
    Exp Brain Res; 2015 Sep; 233(9):2507-15. PubMed ID: 26003129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manual interception of moving targets in two dimensions: performance and space-time accuracy.
    Tresilian JR; Plooy AM; Marinovic W
    Brain Res; 2009 Jan; 1250():202-17. PubMed ID: 19028467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic variation in performance of an interceptive action with changes in the temporal constraints.
    Tresilian JR; Houseman JH
    Q J Exp Psychol A; 2005 Apr; 58(3):447-66. PubMed ID: 16025757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hitting moving targets: effects of target speed and dimensions on movement time.
    Brouwer AM; Smeets JB; Brenner E
    Exp Brain Res; 2005 Aug; 165(1):28-36. PubMed ID: 15868174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect interception actions by blind and visually impaired perceivers: echolocation for interceptive actions.
    Vernat JP; Gordon MS
    Scand J Psychol; 2010 Feb; 51(1):75-83. PubMed ID: 19392947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The accuracy of interceptive action in time and space.
    Tresilian JR
    Exerc Sport Sci Rev; 2004 Oct; 32(4):167-73. PubMed ID: 15604936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target- and effect-directed actions towards temporal goals: similar mechanisms?
    Walter AM; Rieger M
    J Exp Psychol Hum Percept Perform; 2012 Aug; 38(4):958-74. PubMed ID: 22686693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual asymmetries in the temporal and spatial control of aimed movements.
    van Doorn RR
    Hum Mov Sci; 2008 Aug; 27(4):551-76. PubMed ID: 18639362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-phasic hitting with constraints on impact velocity and temporal precision.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Hum Mov Sci; 2005 Apr; 24(2):206-17. PubMed ID: 15964647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect interception actions by blind and sighted perceivers: the role of modality and tau.
    Vernat JP; Gordon MS
    Scand J Psychol; 2011 Feb; 52(1):83-92. PubMed ID: 20642737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Being selective at the plate: processing dependence between perceptual variables relates to hitting goals and performance.
    Gray R
    J Exp Psychol Hum Percept Perform; 2013 Aug; 39(4):1124-42. PubMed ID: 23163787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Children's age-related speed-accuracy strategies in intercepting moving targets in two dimensions.
    Rothenberg-Cunningham A; Newell KM
    Res Q Exerc Sport; 2013 Mar; 84(1):79-87. PubMed ID: 23611011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of task constraints on the organization of interception movements.
    Fayt V; Bootsma RJ; Marteniuk RG; Mackenzie CL; Laurent M
    J Sports Sci; 1997 Dec; 15(6):581-6. PubMed ID: 9486435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hitting moving objects: is target speed used in guiding the hand?
    Brouwer AM; Brenner E; Smeets JB
    Exp Brain Res; 2002 Mar; 143(2):198-211. PubMed ID: 11880896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.