These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 12582833)

  • 1. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed.
    Papaxanthis C; Pozzo T; Schieppati M
    Exp Brain Res; 2003 Feb; 148(4):498-503. PubMed ID: 12582833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man.
    Papaxanthis C; Pozzo T; Stapley P
    Neurosci Lett; 1998 Sep; 253(2):103-6. PubMed ID: 9774160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The representation of gravitational force during drawing movements of the arm.
    Papaxanthis C; Pozzo T; Vinter A; Grishin A
    Exp Brain Res; 1998 May; 120(2):233-42. PubMed ID: 9629965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temporal structure of vertical arm movements.
    Gaveau J; Papaxanthis C
    PLoS One; 2011; 6(7):e22045. PubMed ID: 21765935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial information prior to movement onset influences kinematics of upward arm pointing movements.
    Rousseau C; Papaxanthis C; Gaveau J; Pozzo T; White O
    J Neurophysiol; 2016 Oct; 116(4):1673-1683. PubMed ID: 27486106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Search of gravity force in the planning of arm pointing movements].
    Papaxanthis C; Pozzo T
    C R Seances Soc Biol Fil; 1996; 190(5-6):613-9. PubMed ID: 9074726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similar planning strategies for whole-body and arm movements performed in the sagittal plane.
    Papaxanthis C; Dubost V; Pozzo T
    Neuroscience; 2003; 117(4):779-83. PubMed ID: 12654330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Drawing movements and gravitational force: central or peripheral regulation?].
    Papaxanthis C; Pozzo T; Van Hoecke J; Vinter A; Skoura X
    C R Seances Soc Biol Fil; 1998; 192(1):187-93. PubMed ID: 9759362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force.
    Papaxanthis C; Pozzo T; Popov KE; McIntyre J
    Exp Brain Res; 1998 Jun; 120(4):496-502. PubMed ID: 9655235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle effort is best minimized by the right-dominant arm in the gravity field.
    Poirier G; Papaxanthis C; Mourey F; Lebigre M; Gaveau J
    J Neurophysiol; 2022 Apr; 127(4):1117-1126. PubMed ID: 35353617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction-dependent differences in temporal kinematics for vertical prehension movements.
    Yamamoto S; Kushiro K
    Exp Brain Res; 2014 Feb; 232(2):703-11. PubMed ID: 24292494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of gravitational forces on single joint arm movements in humans.
    Virji-Babul N; Cooke JD; Brown SH
    Exp Brain Res; 1994; 99(2):338-46. PubMed ID: 7925814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional tuning effects during cyclical two-joint arm movements in the horizontal plane.
    Levin O; Ouamer M; Steyvers M; Swinnen SP
    Exp Brain Res; 2001 Dec; 141(4):471-84. PubMed ID: 11810141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural control of arm movements reveals a tendency to use gravity to simplify joint coordination rather than to decrease muscle effort.
    Wang W; Dounskaia N
    Neuroscience; 2016 Dec; 339():418-432. PubMed ID: 27751958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.