These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12582990)

  • 1. Role of latent heat in chiral symmetry breaking transition in the crystallization of 1,1'-binaphthyl.
    Asakura K; Hayashi M; Osanai S
    Chirality; 2003 Mar; 15(3):238-41. PubMed ID: 12582990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probability distributions of enantiomeric excess in unstirred and stirred crystallization of 1,1'-binaphthyl melt.
    Asakura K; Soga T; Uchida T; Osanai S; Kondepudi DK
    Chirality; 2002 Jan; 14(1):85-9. PubMed ID: 11748806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral symmetry breaking and polymorphism in 1,1'-binaphthyl melt crystallization.
    Sainz-Díaz CI; Martín-Islan AP; Cartwright JH
    J Phys Chem B; 2005 Oct; 109(40):18758-64. PubMed ID: 16853413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence and theoretical analysis for the chiral symmetry breaking in the growth front of conglomerate crystal phase of 1,1'-binaphthyl.
    Asakura K; Plasson R; Kondepudi DK
    Chaos; 2006 Sep; 16(3):037116. PubMed ID: 17014250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral symmetry-breaking transition in growth front of crystal phase of 1,1'-binaphthyl in its supercooled melt.
    Asakura K; Nagasaka Y; Hidaka M; Hayashi M; Osanai S; Kondepudi DK
    Chirality; 2004 Feb; 16(2):131-6. PubMed ID: 14712477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic model for the chiral symmetry breaking transition in the growth front of a conglomerate crystal phase.
    Asakura K; Nagasaka Y; Osanai S; Kondepudi DK
    J Phys Chem B; 2005 Feb; 109(4):1586-92. PubMed ID: 16851129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of polymer crystallization in highly supercooled melt: primary nucleation and cold crystallization.
    Yamamoto T
    J Chem Phys; 2010 Jul; 133(3):034904. PubMed ID: 20649356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of molecular chiral asymmetry through stirred crystallization.
    Durand DJ; Kondepudi DK; Moreira PF; Quina FH
    Chirality; 2002 May; 14(4):284-7. PubMed ID: 11968067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal and structural behavior of milk fat. 3. Influence of cooling rate and droplet size on cream crystallization.
    Lopez C; Bourgaux C; Lesieur P; Bernadou S; Keller G; Ollivon M
    J Colloid Interface Sci; 2002 Oct; 254(1):64-78. PubMed ID: 12702426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.
    Worland MR; Wharton DA; Byars SG
    J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the phase diagrams of chiral praziquantel.
    Liu Y; Wang X; Wang JK; Ching CB
    Chirality; 2006 May; 18(4):259-64. PubMed ID: 16521119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of ethylene content in melt-state random and block polypropylene by near-infrared spectroscopy and chemometrics: influence of a change in sample temperature and its compensation method.
    Watari M; Ozaki Y
    Appl Spectrosc; 2005 May; 59(5):600-10. PubMed ID: 15969805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Heat generation, accumulation and dissipation in clusters of the aggregated insects].
    Es'kov EK; Toboev VA
    Zh Obshch Biol; 2009; 70(2):110-20. PubMed ID: 19425349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-induced nucleation of poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) crystallization by HiPco single-walled carbon nanotubes.
    Keogh SM; Hedderman TG; Rüther MG; Lyng FM; Gregan E; Farrell GF; Chambers G; Byrne HJ
    J Phys Chem B; 2005 Mar; 109(12):5600-7. PubMed ID: 16851603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal analysis of the crystallization and melting behavior of lipid matrices and lipid nanoparticles containing high amounts of lecithin.
    Schubert MA; Schicke BC; Müller-Goymann CC
    Int J Pharm; 2005 Jul; 298(1):242-54. PubMed ID: 15905050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of body temperature on indinavir crystallization under loop of Henle conditions.
    Salahuddin S; Kok DJ; Buchholz NN
    J Antimicrob Chemother; 2007 Jan; 59(1):114-7. PubMed ID: 17095526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a unique crystal morphology for the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer.
    He C; Sun J; Zhao T; Hong Z; Zhuang X; Chen X; Jing X
    Biomacromolecules; 2006 Jan; 7(1):252-8. PubMed ID: 16398522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional description of the spontaneous onset of homochirality on the surface of a conglomerate crystal phase.
    Plasson R; Kondepudi DK; Asakura K
    J Phys Chem B; 2006 Apr; 110(16):8481-7. PubMed ID: 16623535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral symmetry breaking via crystallization of the glycine and α-amino acid system: a mathematical model.
    Blanco C; Hochberg D
    Phys Chem Chem Phys; 2011 Jul; 13(28):12920-34. PubMed ID: 21695347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metastable crystalline lamella of cetylpyridinium chloride in the Krafft transition.
    Sasaki S
    J Phys Chem B; 2007 Mar; 111(10):2473-6. PubMed ID: 17302449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.