These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 12583024)

  • 1. [Electric field effect of cell calcium].
    Yan GL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2000 Sep; 24(5):279-82. PubMed ID: 12583024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric field-induced changes in agonist-stimulated calcium fluxes of human HL-60 leukemia cells.
    Kim YV; Conover DL; Lotz WG; Cleary SF
    Bioelectromagnetics; 1998; 19(6):366-76. PubMed ID: 9738527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Modeling of the effect of modulated electromagnetic radiation on animal cells].
    Gapeev AB; Chemeris NK
    Biofizika; 2000; 45(2):299-312. PubMed ID: 10776544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time measurement of cytosolic free calcium concentration in HL-60 cells during static magnetic field exposure and activation by ATP.
    Belton M; Commerford K; Hall J; Prato FS; Carson JJ
    Bioelectromagnetics; 2008 Sep; 29(6):439-46. PubMed ID: 18338328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged Ca2+ transients in ATP-stimulated endothelial cells exposed to 50 Hz electric fields.
    Takahashi K; Doge F; Yoshioka M
    Cell Biol Int; 2005 Mar; 29(3):237-43. PubMed ID: 15890538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors.
    Cia D; Bordais A; Varela C; Forster V; Sahel JA; Rendon A; Picaud S
    J Neurophysiol; 2005 Mar; 93(3):1468-75. PubMed ID: 15483058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between weak low frequency magnetic fields and cell membranes.
    Bauréus Koch CL; Sommarin M; Persson BR; Salford LG; Eberhardt JL
    Bioelectromagnetics; 2003 Sep; 24(6):395-402. PubMed ID: 12929158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of extremely low frequency electric fields on the cytosolic calcium concentration of differentiated HL-60 cells: nonactivated cells.
    Sontag W
    Bioelectromagnetics; 1998; 19(1):32-40. PubMed ID: 9453704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation.
    Zhang J; Blackmore PF; Hargrave BY; Xiao S; Beebe SJ; Schoenbach KH
    Arch Biochem Biophys; 2008 Mar; 471(2):240-8. PubMed ID: 18177729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leukemic cell intracellular responses to nanosecond electric fields.
    Chen N; Schoenbach KH; Kolb JF; James Swanson R; Garner AL; Yang J; Joshi RP; Beebe SJ
    Biochem Biophys Res Commun; 2004 Apr; 317(2):421-7. PubMed ID: 15063775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely low frequency magnetic fields and the promotion of H2O2-induced cell death in HL-60 cells.
    Ding GR; Nakahara T; Hirose H; Koyama S; Takashima Y; Miyakoshi J
    Int J Radiat Biol; 2004 Apr; 80(4):317-24. PubMed ID: 15204708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells.
    Falone S; Grossi MR; Cinque B; D'Angelo B; Tettamanti E; Cimini A; Di Ilio C; Amicarelli F
    Int J Biochem Cell Biol; 2007; 39(11):2093-106. PubMed ID: 17662640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 50 Hz magnetic fields on fMLP-induced shape changes in invertebrate immunocytes: The role of calcium ion channels.
    Gobba F; Malagoli D; Ottaviani E
    Bioelectromagnetics; 2003 May; 24(4):277-82. PubMed ID: 12696087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular currents alter gap junction intercellular communication in synovial fibroblasts.
    Marino AA; Kolomytkin OV; Frilot C
    Bioelectromagnetics; 2003 Apr; 24(3):199-205. PubMed ID: 12669303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release.
    Griffiths H; MacLeod KT
    J Gen Physiol; 2003 May; 121(5):353-73. PubMed ID: 12719483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress of nanosecond pulsed electric field applied to intracellular electromanipulation].
    Yao C; Mo D; Sun C; Chen X; Xiong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1206-9. PubMed ID: 19024477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations of intracellular calcium concentration in mice neuroblastoma cells by electrical field and UVA.
    Ihrig I; Heese C; Glaser R
    Bioelectromagnetics; 1997; 18(8):595-7. PubMed ID: 9383248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels.
    Zhang HY; Langeslag M; Voncken M; Roubos EW; Scheenen WJ
    J Neuroendocrinol; 2005 Jan; 17(1):1-9. PubMed ID: 15720469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion channels in smooth muscle: regulators of intracellular calcium and contractility.
    Thorneloe KS; Nelson MT
    Can J Physiol Pharmacol; 2005 Mar; 83(3):215-42. PubMed ID: 15870837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium.
    Danilenko M; Wang Q; Wang X; Levy J; Sharoni Y; Studzinski GP
    Cancer Res; 2003 Mar; 63(6):1325-32. PubMed ID: 12649194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.