BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12584162)

  • 1. The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications.
    Hazra TK; Izumi T; Kow YW; Mitra S
    Carcinogenesis; 2003 Feb; 24(2):155-7. PubMed ID: 12584162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA.
    Hazra TK; Izumi T; Boldogh I; Imhoff B; Kow YW; Jaruga P; Dizdaroglu M; Mitra S
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3523-8. PubMed ID: 11904416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases.
    Szczesny B; Hazra TK; Papaconstantinou J; Mitra S; Boldogh I
    Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10670-5. PubMed ID: 12960370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of NEIL1 and NEIL2, members of a distinct family of mammalian DNA glycosylases for repair of oxidized bases.
    Hazra TK; Mitra S
    Methods Enzymol; 2006; 408():33-48. PubMed ID: 16793361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis thaliana Ogg1 protein excises 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from oxidatively damaged DNA containing multiple lesions.
    Morales-Ruiz T; Birincioglu M; Jaruga P; Rodriguez H; Roldan-Arjona T; Dizdaroglu M
    Biochemistry; 2003 Mar; 42(10):3089-95. PubMed ID: 12627976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis.
    Shinmura K; Yokota J
    Antioxid Redox Signal; 2001 Aug; 3(4):597-609. PubMed ID: 11554447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines.
    Dherin C; Dizdaroglu M; Doerflinger H; Boiteux S; Radicella JP
    Nucleic Acids Res; 2000 Dec; 28(23):4583-92. PubMed ID: 11095666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
    Schärer OD; Jiricny J
    Bioessays; 2001 Mar; 23(3):270-81. PubMed ID: 11223884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
    Lee AJ; Wallace SS
    Free Radic Biol Med; 2017 Jun; 107():170-178. PubMed ID: 27865982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NEIL1 excises 3' end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1.
    Parsons JL; Zharkov DO; Dianov GL
    Nucleic Acids Res; 2005; 33(15):4849-56. PubMed ID: 16129732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains.
    Rolseth V; Rundén-Pran E; Luna L; McMurray C; Bjørås M; Ottersen OP
    DNA Repair (Amst); 2008 Sep; 7(9):1578-88. PubMed ID: 18603019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.
    Masaoka A; Matsubara M; Hasegawa R; Tanaka T; Kurisu S; Terato H; Ohyama Y; Karino N; Matsuda A; Ide H
    Biochemistry; 2003 May; 42(17):5003-12. PubMed ID: 12718543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of base excision repair: glycosylase mechanisms and structures.
    McCullough AK; Dodson ML; Lloyd RS
    Annu Rev Biochem; 1999; 68():255-85. PubMed ID: 10872450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations.
    Dherin C; Radicella JP; Dizdaroglu M; Boiteux S
    Nucleic Acids Res; 1999 Oct; 27(20):4001-7. PubMed ID: 10497264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
    Lau AY; Wyatt MD; Glassner BJ; Samson LD; Ellenberger T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13573-8. PubMed ID: 11106395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.