BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12584194)

  • 1. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
    Grabowska D; Chelstowska A
    J Biol Chem; 2003 Apr; 278(16):13984-8. PubMed ID: 12584194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sources of NADPH in yeast vary with carbon source.
    Minard KI; McAlister-Henn L
    J Biol Chem; 2005 Dec; 280(48):39890-6. PubMed ID: 16179340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Ald6p as the target of a class of small-molecule suppressors of FK506 and their use in network dissection.
    Butcher RA; Schreiber SL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7868-73. PubMed ID: 15146068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
    Yoshikawa Y; Nasuno R; Takagi H
    Yeast; 2021 Jul; 38(7):414-423. PubMed ID: 33648021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae.
    Minard KI; Jennings GT; Loftus TM; Xuan D; McAlister-Henn L
    J Biol Chem; 1998 Nov; 273(47):31486-93. PubMed ID: 9813062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant function of cytosolic sources of NADPH in yeast.
    Minard KI; McAlister-Henn L
    Free Radic Biol Med; 2001 Sep; 31(6):832-43. PubMed ID: 11557322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase.
    Nogae I; Johnston M
    Gene; 1990 Dec; 96(2):161-9. PubMed ID: 2269430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae.
    Zhao X; Shi F; Zhan W
    Lett Appl Microbiol; 2015 Oct; 61(4):354-60. PubMed ID: 26179622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae.
    Liu ZL; Huang X; Zhou Q; Xu J
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5781-5796. PubMed ID: 31139900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH is important for isobutanol tolerance in a minimal medium of Saccharomyces cerevisiae.
    Yoshikawa Y; Nasuno R; Takagi H
    Biosci Biotechnol Biochem; 2021 Aug; 85(9):2084-2088. PubMed ID: 34169967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection.
    Slekar KH; Kosman DJ; Culotta VC
    J Biol Chem; 1996 Nov; 271(46):28831-6. PubMed ID: 8910528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation.
    Saint-Prix F; Bönquist L; Dequin S
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2209-2220. PubMed ID: 15256563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae.
    Kwak S; Yun EJ; Lane S; Oh EJ; Kim KH; Jin YS
    Biotechnol J; 2020 Feb; 15(2):e1900173. PubMed ID: 31466140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isocitrate dehydrogenase is important for nitrosative stress resistance in Cryptococcus neoformans, but oxidative stress resistance is not dependent on glucose-6-phosphate dehydrogenase.
    Brown SM; Upadhya R; Shoemaker JD; Lodge JK
    Eukaryot Cell; 2010 Jun; 9(6):971-80. PubMed ID: 20400467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in disulfide bond content of proteins in a yeast strain lacking major sources of NADPH.
    Minard KI; Carroll CA; Weintraub ST; Mc-Alister-Henn L
    Free Radic Biol Med; 2007 Jan; 42(1):106-17. PubMed ID: 17157197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.
    Lee SM; Koh HJ; Park DC; Song BJ; Huh TL; Park JW
    Free Radic Biol Med; 2002 Jun; 32(11):1185-96. PubMed ID: 12031902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.