These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12585459)

  • 1. Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments.
    Pittman JL; Henry CS; Gilman SD
    Anal Chem; 2003 Feb; 75(3):361-70. PubMed ID: 12585459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line monitoring of electroosmotic flow for capillary electrophoretic separations.
    Pittman JL; Schrum KF; Gilman SD
    Analyst; 2001 Aug; 126(8):1240-7. PubMed ID: 11534586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental studies of electroosmotic flow dynamics during sample stacking for capillary electrophoresis.
    Pittman JL; Gessner HJ; Frederick KA; Raby EM; Batts JB; Gilman SD
    Anal Chem; 2003 Jul; 75(14):3531-8. PubMed ID: 14570207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring electroosmotic flow by periodic photobleaching of a dilute, neutral fluorophore.
    Schrum KF; Lancaster JM; Johnston SE; Gilman SD
    Anal Chem; 2000 Sep; 72(18):4317-21. PubMed ID: 11008766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flow-switchable poly(dimethylsiloxane) microfluidic channel modified with cysteine based on gold nanoparticles.
    Wang W; Zhao L; Zhou F; Zhu JJ; Zhang JR
    Talanta; 2007 Sep; 73(3):534-9. PubMed ID: 19073067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic Flow Hysteresis for Dissimilar Anionic Solutions.
    Lim AE; Lim CY; Lam YC
    Anal Chem; 2016 Aug; 88(16):8064-73. PubMed ID: 27426052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel.
    Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR
    Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.
    Sureda M; Miller A; Diez FJ
    Electrophoresis; 2012 Sep; 33(17):2759-68. PubMed ID: 22965723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic Flow in Microchannel with Black Silicon Nanostructures.
    Lim AE; Lim CY; Lam YC; Taboryski R
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-induced electroosmotic flow in microfluidic capillaries.
    Azadi G; Tripathi A
    Electrophoresis; 2012 Jul; 33(14):2094-101. PubMed ID: 22821484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
    Wu X; Ramiah Rajasekaran P; Martin CR
    ACS Nano; 2016 Apr; 10(4):4637-43. PubMed ID: 27046145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing electroosmotic flow in microfluidic devices.
    Gaudioso J; Craighead HG
    J Chromatogr A; 2002 Sep; 971(1-2):249-53. PubMed ID: 12350121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of the electroosmotic flow of ionic liquid solutions in non-aqueous media using thermal marks.
    Seiman A; Vaher M; Kaljurand M
    J Chromatogr A; 2008 May; 1189(1-2):266-73. PubMed ID: 18221941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.
    Zhang W; He M; Yuan T; Xu W
    Electrophoresis; 2017 Dec; 38(24):3130-3135. PubMed ID: 28869669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement.
    Babar M; Dubey K; Bahga SS
    Electrophoresis; 2020 Apr; 41(7-8):570-577. PubMed ID: 31661562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of flow direction in microfluidic devices with polyelectrolyte multilayers.
    Barker SL; Ross D; Tarlov MJ; Gaitan M; Locascio LE
    Anal Chem; 2000 Dec; 72(24):5925-9. PubMed ID: 11140758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.
    Szekely L; Freitag R
    Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.