These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 12585880)
1. Enantioselective synthesis of spirocyclic aminochroman derivatives according to the CN(R,S) strategy. Pavé G; Léger JM; Jarry C; Viaud-Massuard MC; Guillaumet G J Org Chem; 2003 Feb; 68(4):1401-8. PubMed ID: 12585880 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of 3-aminochroman derivatives by radical cyclization. Pavé G; Usse-Versluys S; Viaud-Massuard MC; Guillaumet G Org Lett; 2003 Nov; 5(23):4253-6. PubMed ID: 14601973 [TBL] [Abstract][Full Text] [Related]
3. Efficient enantioselective synthesis of 3-aminochroman derivatives through ruthenium-Synphos catalyzed asymmetric hydrogenation. Wu Z; Ayad T; Ratovelomanana-Vidal V Org Lett; 2011 Aug; 13(15):3782-5. PubMed ID: 21755918 [TBL] [Abstract][Full Text] [Related]
4. Role of chemical structure in stereoselective recognition of beta-blockers by cyclodextrins in capillary zone electrophoresis. Gagyi L; Gyéresi A; Kilár F J Biochem Biophys Methods; 2008 Apr; 70(6):1268-75. PubMed ID: 18022245 [TBL] [Abstract][Full Text] [Related]
5. CpIr complex-catalyzed N-heterocyclization of primary amines with diols: a new catalytic system for environmentally benign synthesis of cyclic amines. Fujita K; Fujii T; Yamaguchi R Org Lett; 2004 Sep; 6(20):3525-8. PubMed ID: 15387539 [TBL] [Abstract][Full Text] [Related]
6. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents. Abad JL; Soldevila C; Camps F; Clapés P J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498 [TBL] [Abstract][Full Text] [Related]
7. Enantioselective partial reduction of 2,5-disubstituted pyrroles via a chiral protonation approach. Donohoe TJ; Freestone GC; Headley CE; Rigby CL; Cousins RP; Bhalay G Org Lett; 2004 Sep; 6(18):3055-8. PubMed ID: 15330586 [TBL] [Abstract][Full Text] [Related]
8. Enantioselective capillary electrophoretic separation of tryptophane- and tyrosine-methylesters in a dual system with a tetra-oxadiaza-crown-ether derivative and a cyclodextrin. Elek J; Mangelings D; Iványi T; Lázár I; Heyden YV J Pharm Biomed Anal; 2005 Jul; 38(4):601-8. PubMed ID: 15967287 [TBL] [Abstract][Full Text] [Related]
9. Enantioseparation of binaphthol and its mono derivatives by cyclodextrin-modified capillary zone electrophoresis. Mofaddel N; Krajian H; Villemin D; Desbène PL J Chromatogr A; 2008 Nov; 1211(1-2):142-50. PubMed ID: 18930236 [TBL] [Abstract][Full Text] [Related]
10. Structural studies on the chiral selector capacity of cyclodextrin derivatives. Tokés B; Ferencz L; Buchwald P; Donáth-Nagy G; Vancea S; Sánta N; Kis EL J Biochem Biophys Methods; 2008 Apr; 70(6):1276-82. PubMed ID: 18280575 [TBL] [Abstract][Full Text] [Related]
11. Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chankvetadze B Chem Soc Rev; 2004 Jul; 33(6):337-47. PubMed ID: 15280966 [TBL] [Abstract][Full Text] [Related]
12. Total synthesis of (+)-astrophylline. Schaudt M; Blechert S J Org Chem; 2003 Apr; 68(7):2913-20. PubMed ID: 12662069 [TBL] [Abstract][Full Text] [Related]
14. Enantiomeric separation of chiral peptide nucleic acid monomers by capillary electrophoresis with charged cyclodextrins. Galaverna G; Sforza S; Tedeschi T; Corradini R; Dossena A; Marchelli R Electrophoresis; 2003 Aug; 24(15):2698-703. PubMed ID: 12900885 [TBL] [Abstract][Full Text] [Related]
15. Enantiomeric purity determination of tamsulosin by capillary electrophoresis using cyclodextrins and a polyacrylamide-coated capillary. Kavalírová A; Pospísilová M; Karlícek R Farmaco; 2005 Oct; 60(10):834-9. PubMed ID: 16139279 [TBL] [Abstract][Full Text] [Related]
16. A solid-phase, library synthesis of natural-product-like derivatives from an enantiomerically pure tetrahydroquinoline scaffold. Couve-Bonnaire S; Chou DT; Gan Z; Arya P J Comb Chem; 2004; 6(1):73-7. PubMed ID: 14714987 [TBL] [Abstract][Full Text] [Related]
17. Enantioselective synthesis of 2- and 3-substituted 2,3-dihydro[1,4]dioxino[2,3-b]pyridine derivatives and enantiomeric purity control by capillary electrophoresis. Lazar S; Soukri M; El Haddad M; Akssira M; Leger JM; Jarry C; Morin P; Guillaumet G Chirality; 2005 Jan; 17(1):30-6. PubMed ID: 15526340 [TBL] [Abstract][Full Text] [Related]
18. Quantification of very low enantiomeric impurity of efaroxan using a dual cyclodextrin system by capillary electrophoresis. Lorin M; Delépée R; Morin P; Ribet JP Anal Chim Acta; 2007 Jun; 592(2):139-45. PubMed ID: 17512818 [TBL] [Abstract][Full Text] [Related]
19. Enantiomeric separation of acidic compounds using single-isomer amino cyclodextrin derivatives in nonaqueous capillary electrophoresis. Fradi I; Servais AC; Pedrini M; Chiap P; Iványi R; Crommen J; Fillet M Electrophoresis; 2006 Sep; 27(17):3434-42. PubMed ID: 16892479 [TBL] [Abstract][Full Text] [Related]
20. LIC-KOR-promoted synthesis of alkoxydienyl amines: an entry to 2,3,4,5-tetrasubstituted pyrroles. Blangetti M; Deagostino A; Prandi C; Tabasso S; Venturello P Org Lett; 2009 Sep; 11(17):3914-7. PubMed ID: 19655734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]