These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 12586390)
21. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. Watson RJ; Millichap P; Joyce SA; Reynolds S; Clarke DJ BMC Microbiol; 2010 Jun; 10():177. PubMed ID: 20569430 [TBL] [Abstract][Full Text] [Related]
22. Using a DNA microarray to investigate the distribution of insect virulence factors in strains of photorhabdus bacteria. Marokhazi J; Waterfield N; LeGoff G; Feil E; Stabler R; Hinds J; Fodor A; ffrench-Constant RH J Bacteriol; 2003 Aug; 185(15):4648-56. PubMed ID: 12867479 [TBL] [Abstract][Full Text] [Related]
23. Culturing and Genetically Manipulating Entomopathogenic Nematodes. Heryanto C; Ratnappan R; O'Halloran DM; Hawdon JM; Eleftherianos I J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435903 [TBL] [Abstract][Full Text] [Related]
24. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Lulamba TE; Green E; Serepa-Dlamini MH Gene; 2021 Aug; 795():145780. PubMed ID: 34147570 [TBL] [Abstract][Full Text] [Related]
25. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Ogier JC; Pagès S; Bisch G; Chiapello H; Médigue C; Rouy Z; Teyssier C; Vincent S; Tailliez P; Givaudan A; Gaudriault S Genome Biol Evol; 2014 Jun; 6(6):1495-513. PubMed ID: 24904010 [TBL] [Abstract][Full Text] [Related]
26. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Watson RJ; Joyce SA; Spencer GV; Clarke DJ Mol Microbiol; 2005 May; 56(3):763-73. PubMed ID: 15819630 [TBL] [Abstract][Full Text] [Related]
28. Photorhabdus asymbiotica as an Insect and Human Pathogen. Hapeshi A; Waterfield NR Curr Top Microbiol Immunol; 2017; 402():159-177. PubMed ID: 27726002 [TBL] [Abstract][Full Text] [Related]
29. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment. Jones RT; Sanchez-Contreras M; Vlisidou I; Amos MR; Yang G; Muñoz-Berbel X; Upadhyay A; Potter UJ; Joyce SA; Ciche TA; Jenkins AT; Bagby S; Ffrench-Constant RH; Waterfield NR BMC Microbiol; 2010 May; 10():141. PubMed ID: 20462430 [TBL] [Abstract][Full Text] [Related]
30. The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis. Bennett HP; Clarke DJ J Bacteriol; 2005 Jan; 187(1):77-84. PubMed ID: 15601690 [TBL] [Abstract][Full Text] [Related]
31. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Shi YM; Bode HB Nat Prod Rep; 2018 Apr; 35(4):309-335. PubMed ID: 29359226 [TBL] [Abstract][Full Text] [Related]
32. Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. Easom CA; Clarke DJ BMC Microbiol; 2008 Oct; 8():168. PubMed ID: 18834522 [TBL] [Abstract][Full Text] [Related]
33. Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence. Chapman C; Tisa LS Can J Microbiol; 2016 Aug; 62(8):657-67. PubMed ID: 27300499 [TBL] [Abstract][Full Text] [Related]
34. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Kim Y; Ji D; Cho S; Park Y J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640 [TBL] [Abstract][Full Text] [Related]
35. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. Tobias NJ; Mishra B; Gupta DK; Sharma R; Thines M; Stinear TP; Bode HB BMC Genomics; 2016 Aug; 17():537. PubMed ID: 27488257 [TBL] [Abstract][Full Text] [Related]
36. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. An R; Sreevatsan S; Grewal PS BMC Genomics; 2009 Sep; 10():433. PubMed ID: 19754939 [TBL] [Abstract][Full Text] [Related]
37. Recent insight into the pathogenicity mechanisms of the emergent pathogen Photorhabdus asymbiotica. Costa SC; Chavez CV; Jubelin G; Givaudan A; Escoubas JM; Brehélin M; Zumbihl R Microbes Infect; 2010 Mar; 12(3):182-9. PubMed ID: 20034588 [TBL] [Abstract][Full Text] [Related]
38. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Tobias NJ; Wolff H; Djahanschiri B; Grundmann F; Kronenwerth M; Shi YM; Simonyi S; Grün P; Shapiro-Ilan D; Pidot SJ; Stinear TP; Ebersberger I; Bode HB Nat Microbiol; 2017 Dec; 2(12):1676-1685. PubMed ID: 28993611 [TBL] [Abstract][Full Text] [Related]
39. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Duchaud E; Rusniok C; Frangeul L; Buchrieser C; Givaudan A; Taourit S; Bocs S; Boursaux-Eude C; Chandler M; Charles JF; Dassa E; Derose R; Derzelle S; Freyssinet G; Gaudriault S; Médigue C; Lanois A; Powell K; Siguier P; Vincent R; Wingate V; Zouine M; Glaser P; Boemare N; Danchin A; Kunst F Nat Biotechnol; 2003 Nov; 21(11):1307-13. PubMed ID: 14528314 [TBL] [Abstract][Full Text] [Related]
40. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Shi YM; Hirschmann M; Shi YN; Ahmed S; Abebew D; Tobias NJ; Grün P; Crames JJ; Pöschel L; Kuttenlochner W; Richter C; Herrmann J; Müller R; Thanwisai A; Pidot SJ; Stinear TP; Groll M; Kim Y; Bode HB Nat Chem; 2022 Jun; 14(6):701-712. PubMed ID: 35469007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]