These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12586506)

  • 1. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis.
    Merino G; Kalia YN; Delgado-Charro MB; Potts RO; Guy RH
    J Control Release; 2003 Feb; 88(1):85-94. PubMed ID: 12586506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of low-frequency ultrasound on the transdermal permeation of mannitol: comparative studies with in vivo and in vitro skin.
    Tang H; Blankschtein D; Langer R
    J Pharm Sci; 2002 Aug; 91(8):1776-94. PubMed ID: 12115805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity.
    Terahara T; Mitragotri S; Kost J; Langer R
    Int J Pharm; 2002 Mar; 235(1-2):35-42. PubMed ID: 11879737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model.
    Tezel A; Sens A; Mitragotri S
    J Pharm Sci; 2003 Feb; 92(2):381-93. PubMed ID: 12532387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways.
    Alvarez-Román R; Merino G; Kalia YN; Naik A; Guy RH
    J Pharm Sci; 2003 Jun; 92(6):1138-46. PubMed ID: 12761803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis.
    Tang H; Mitragotri S; Blankschtein D; Langer R
    J Pharm Sci; 2001 May; 90(5):545-68. PubMed ID: 11288100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous resins as a cavitation enhancer for low-frequency sonophoresis.
    Terahara T; Mitragotri S; Langer R
    J Pharm Sci; 2002 Mar; 91(3):753-9. PubMed ID: 11920760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density.
    Tezel A; Sens A; Mitragotri S
    Pharm Res; 2002 Dec; 19(12):1841-6. PubMed ID: 12523663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency sonophoresis enhances rivastigmine permeation in vitro and in vivo.
    Yu ZW; Liang Y; Liang WQ
    Pharmazie; 2015 Jun; 70(6):379-80. PubMed ID: 26189298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis.
    Rich KT; Hoerig CL; Rao MB; Mast TD
    J Control Release; 2014 Nov; 194():266-77. PubMed ID: 25135791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of threshold energy dose for ultrasound-induced transdermal drug transport.
    Mitragotri S; Farrell J; Tang H; Terahara T; Kost J; Langer R
    J Control Release; 2000 Jan; 63(1-2):41-52. PubMed ID: 10640579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport.
    Tang H; Wang CC; Blankschtein D; Langer R
    Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdermal drug delivery using low-frequency sonophoresis.
    Mitragotri S; Blankschtein D; Langer R
    Pharm Res; 1996 Mar; 13(3):411-20. PubMed ID: 8692734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport.
    Mitragotri S; Ray D; Farrell J; Tang H; Yu B; Kost J; Blankschtein D; Langer R
    J Pharm Sci; 2000 Jul; 89(7):892-900. PubMed ID: 10861590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin.
    Mutoh M; Ueda H; Nakamura Y; Hirayama K; Atobe M; Kobayashi D; Morimoto Y
    J Control Release; 2003 Sep; 92(1-2):137-46. PubMed ID: 14499192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependence of sonophoresis.
    Tezel A; Sens A; Tuchscherer J; Mitragotri S
    Pharm Res; 2001 Dec; 18(12):1694-700. PubMed ID: 11785688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explanation for the variation of the sonophoretic transdermal transport enhancement from drug to drug.
    Mitragotri S; Blankschtein D; Langer R
    J Pharm Sci; 1997 Oct; 86(10):1190-2. PubMed ID: 9344179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles.
    Han T; Das DB
    J Pharm Sci; 2013 Oct; 102(10):3614-22. PubMed ID: 23873449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery.
    Bommannan D; Okuyama H; Stauffer P; Guy RH
    Pharm Res; 1992 Apr; 9(4):559-64. PubMed ID: 1495903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.
    Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y
    Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.