These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12586520)

  • 1. The effects of precision demands during a low intensity pinching task on muscle activation and load sharing of the fingers.
    Visser B; de Looze MP; Veeger DH; Douwes M; Groenesteijn L; de Korte E; van Dieën JH
    J Electromyogr Kinesiol; 2003 Apr; 13(2):149-57. PubMed ID: 12586520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of mental load on proximal and distal arm muscle activity.
    Bloemsaat JG; Meulenbroek RG; Van Galen GP
    Exp Brain Res; 2005 Dec; 167(4):622-34. PubMed ID: 16078028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of shoulder load and pinch force on electromyographic activity and blood flow in the forearm during a pinch task.
    Visser B; Nielsen PK; de Kraker H; Smits M; Jensen BR; Veeger D; van Dieën JH
    Ergonomics; 2006 Dec; 49(15):1627-38. PubMed ID: 17090508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the musculoskeletal load of the trapezius and deltoid muscles during hand activity.
    Roman-Liu D; Tokarski T; Kamińska J
    Int J Occup Saf Ergon; 2001; 7(2):179-93. PubMed ID: 11373186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task.
    Srinivasan D; Mathiassen SE; Hallman DM; Samani A; Madeleine P; Lyskov E
    Eur J Appl Physiol; 2016 Jan; 116(1):227-39. PubMed ID: 26403235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in inter-digit coupling during finger pinching.
    Keogh J; Morrison S; Barrett R
    Eur J Appl Physiol; 2006 May; 97(1):76-88. PubMed ID: 16496196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of precision and force demands, grip diameter, and arm support during manual work: an electromyographic study.
    Milerad E; Ericson MO
    Ergonomics; 1994 Feb; 37(2):255-64. PubMed ID: 8119259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of precision demands and mental pressure on muscle activation and hand forces in computer mouse tasks.
    Visser B; De Looze M; De Graaff M; Van Dieën J
    Ergonomics; 2004 Feb; 47(2):202-17. PubMed ID: 14660213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of speed and precision demands on human shoulder muscle electromyography during a repetitive task.
    Laursen B; Jensen BR; Sjøgaard G
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):544-8. PubMed ID: 9840410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of extension of the ulnar fingers on force control and muscle activity of the hand during a precision pinch.
    Date S; Kurumadani H; Kurauchi K; Fukushima T; Goto N; Sunagawa T
    J Hand Surg Eur Vol; 2024 May; 49(5):608-616. PubMed ID: 37933731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-sharing patterns in the shoulder during isometric flexion tasks.
    Nieminen H; Niemi J; Takala EP; Viikari-Juntura E
    J Biomech; 1995 May; 28(5):555-66. PubMed ID: 7775491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StartReact effects in first dorsal interosseous muscle are absent in a pinch task, but present when combined with elbow flexion.
    Castellote JM; Kofler M
    PLoS One; 2018; 13(7):e0201301. PubMed ID: 30048503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further insight into the task-dependent excitability of motor evoked potentials in first dorsal interosseous muscle in humans.
    Hasegawa Y; Kasai T; Tsuji T; Yahagi S
    Exp Brain Res; 2001 Oct; 140(4):387-96. PubMed ID: 11685391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle activity during computer-based office work in relation to self-reported job demands and gender.
    Blangsted AK; Hansen K; Jensen C
    Eur J Appl Physiol; 2003 May; 89(3-4):352-8. PubMed ID: 12736845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantify work load and muscle functional activation patterns in neck-shoulder muscles of female sewing machine operators using surface electromyogram.
    Zhang FR; He LH; Wu SS; Li JY; Ye KP; Wang S
    Chin Med J (Engl); 2011 Nov; 124(22):3731-7. PubMed ID: 22340233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatial dependency of shoulder muscular demands during upward and downward exertions.
    Nadon AL; Vidt ME; Chow AY; Dickerson CR
    Ergonomics; 2016 Oct; 59(10):1294-1306. PubMed ID: 26912336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.
    Dupan SSG; Stegeman DF; Maas H
    Hum Mov Sci; 2018 Jun; 59():223-233. PubMed ID: 29738941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation and tremor of the shoulder muscles to the demands of an archery task.
    Lin JJ; Hung CJ; Yang CC; Chen HY; Chou FC; Lu TW
    J Sports Sci; 2010 Feb; 28(4):415-21. PubMed ID: 20432134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximal arm kinematics affect grip force-load force coordination.
    Vermillion BC; Lum PS; Lee SW
    J Neurophysiol; 2015 Oct; 114(4):2265-77. PubMed ID: 26289460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How dependent are grip force and arm actions during holding an object?
    Danion F
    Exp Brain Res; 2004 Sep; 158(1):109-19. PubMed ID: 15014924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.