BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 12586633)

  • 1. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression.
    Ohm JE; Gabrilovich DI; Sempowski GD; Kisseleva E; Parman KS; Nadaf S; Carbone DP
    Blood; 2003 Jun; 101(12):4878-86. PubMed ID: 12586633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7.
    Bolotin E; Smogorzewska M; Smith S; Widmer M; Weinberg K
    Blood; 1996 Sep; 88(5):1887-94. PubMed ID: 8781449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhibiting proliferation of beta-selected thymocytes.
    Zoller AL; Kersh GJ
    J Immunol; 2006 Jun; 176(12):7371-8. PubMed ID: 16751381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thymic involution and thymocyte phenotypic alterations induced by murine mammary adenocarcinomas.
    Fu Y; Paul RD; Wang Y; Lopez DM
    J Immunol; 1989 Dec; 143(12):4300-7. PubMed ID: 2592775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal thymic atrophy after exposure to T-2 toxin: selectivity for lymphoid progenitor cells.
    Holladay SD; Blaylock BL; Comment CE; Heindel JJ; Luster MI
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):8-14. PubMed ID: 8337703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-associated thymic atrophy is not associated with a deficiency in the CD44(+)CD25(-)CD3(-)CD4(-)CD8(-) thymocyte population.
    Aspinall R; Andrew D
    Cell Immunol; 2001 Sep; 212(2):150-7. PubMed ID: 11748931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of NK1.1 expression during lineage commitment of progenitor thymocytes.
    Carlyle JR; Zúñiga-Pflücker JC
    J Immunol; 1998 Dec; 161(12):6544-51. PubMed ID: 9862680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of thymic progenitors in adult mouse bone marrow.
    Perry SS; Pierce LJ; Slayton WB; Spangrude GJ
    J Immunol; 2003 Feb; 170(4):1877-86. PubMed ID: 12574354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse.
    Yagi H; Matsumoto M; Nakamura M; Makino S; Suzuki R; Harada M; Itoh T
    J Immunol; 1996 Oct; 157(8):3412-9. PubMed ID: 8871639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of diethylstilbestrol and 2,3,7,8-tetrachlorodibenzo-p-dioxin on thymocyte differentiation, proliferation, and apoptosis in bcl-2 transgenic mouse fetal thymus organ culture.
    Lai ZW; Fiore NC; Hahn PJ; Gasiewicz TA; Silverstone AE
    Toxicol Appl Pharmacol; 2000 Oct; 168(1):15-24. PubMed ID: 11000096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlphaIIb integrin expression during development of the murine hemopoietic system.
    Corbel C; Salaün J
    Dev Biol; 2002 Mar; 243(2):301-11. PubMed ID: 11884039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice.
    Chatterjea-Matthes D; García-Ojeda ME; Dejbakhsh-Jones S; Jerabek L; Manz MG; Weissman IL; Strober S
    J Immunol; 2003 Aug; 171(3):1207-15. PubMed ID: 12874207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemopoietic progenitors in the murine fetal liver capable of rapidly generating T cells.
    Kawamoto H; Ohmura K; Hattori N; Katsura Y
    J Immunol; 1997 Apr; 158(7):3118-24. PubMed ID: 9120264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on
    Barreira-Silva P; Melo-Miranda R; Nobrega C; Roque S; Serre-Miranda C; Borges M; Armada G; de Sá Calçada D; Behar SM; Appelberg R; Correia-Neves M
    Front Immunol; 2021; 12():696415. PubMed ID: 34987496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sublethal Total Body Irradiation Causes Long-Term Deficits in Thymus Function by Reducing Lymphoid Progenitors.
    Xiao S; Shterev ID; Zhang W; Young L; Shieh JH; Moore M; van den Brink M; Sempowski GD; Manley NR
    J Immunol; 2017 Oct; 199(8):2701-2712. PubMed ID: 28931604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T cell receptor-negative thymocytes from SCID mice can be induced to enter the CD4/CD8 differentiation pathway.
    Shores EW; Sharrow SO; Uppenkamp I; Singer A
    Eur J Immunol; 1990 Jan; 20(1):69-77. PubMed ID: 1968394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limiting dilution analysis of T-cell progenitors in the bone marrow of thymic lymphoma-susceptible B10 and -resistant C3H mice after fractionated whole-body X-irradiation.
    Kamisaku H; Aizawa S; Kitagawa M; Ikarashi Y; Sado T
    Int J Radiat Biol; 1997 Aug; 72(2):191-9. PubMed ID: 9269312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed differentiation of murine thymocytes during fetal thymus organ culture.
    DeLuca D; Bluestone JA; Shultz LD; Sharrow SO; Tatsumi Y
    J Immunol Methods; 1995 Jan; 178(1):13-29. PubMed ID: 7829862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single stem cell can recolonize an embryonic thymus, producing phenotypically distinct T-cell populations.
    Kingston R; Jenkinson EJ; Owen JJ
    Nature; 1985 Oct 31-Nov 6; 317(6040):811-3. PubMed ID: 3877245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages.
    Masuda K; Itoi M; Amagai T; Minato N; Katsura Y; Kawamoto H
    J Immunol; 2005 Mar; 174(5):2525-32. PubMed ID: 15728458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.