These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1258671)

  • 1. Regional distribution of blood flow in calf muscles of rat during passive stretch and sustained contraction.
    Wisnes A; Kirkebo A
    Acta Physiol Scand; 1976 Feb; 96(2):256-66. PubMed ID: 1258671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional tissue fluid pressure in rat calf muscle during sustained contraction or stretch.
    Kirkebø A; Wisnes A
    Acta Physiol Scand; 1982 Apr; 114(4):551-6. PubMed ID: 7136783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood flow in "red" and "'white" calf muscles in cats during isometric and isotonic exercise.
    Bonde-Petersen F; Robertson CH
    Acta Physiol Scand; 1981 Jul; 112(3):243-51. PubMed ID: 7293795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marked regional heterogeneity in blood flow within a single skeletal muscle at rest and during exercise hyperaemia in the rabbit.
    Iversen PO; Standa M; Nicolaysen G
    Acta Physiol Scand; 1989 May; 136(1):17-28. PubMed ID: 2773659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes in blood flow after longitudinal stretching of the cat m. gastrocnemius].
    Matchanov AT; Levtov VA; Orlov VV
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jan; 69(1):74-83. PubMed ID: 6825891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia.
    Brevetti LS; Paek R; Brady SE; Hoffman JI; Sarkar R; Messina LM
    J Surg Res; 2001 Jun; 98(1):21-6. PubMed ID: 11368533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of contraction force and frequency on postexercise hyperemia in human calf muscles.
    Richardson D; Shewchuk R
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Oct; 49(4):649-54. PubMed ID: 7440279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles.
    Evans C; Vance S; Brown M
    J Sports Sci; 2010 Jul; 28(9):999-1007. PubMed ID: 20544482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of vascular reconstructions on tissue gas tensions in calf muscles of patients with occlusive arterial disease.
    Jussila EJ; Niinikoski J
    Ann Chir Gynaecol; 1981; 70(2):56-60. PubMed ID: 6797342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow to different rat skeletal muscle fiber type sections during isometric contractions in situ.
    Terjung RL; Engbretson BM
    Med Sci Sports Exerc; 1988 Oct; 20(5 Suppl):S124-30. PubMed ID: 3193871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow changes following brief concentric contractions of human calf muscles.
    Nagami K
    Tokai J Exp Clin Med; 1990 Mar; 15(1):35-44. PubMed ID: 2087704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rate and distribution of muscle blood flow after prolonged ischemia.
    Forrest I; Lindsay T; Romaschin A; Walker P
    J Vasc Surg; 1989 Jul; 10(1):83-8. PubMed ID: 2746802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thigh and calf blood flows after isometric contraction in untrained and trained subjects.
    Kitamura K; Shimaoka M; Matsui H; Miyamura M
    Jpn J Physiol; 1983; 33(3):449-58. PubMed ID: 6632375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the role of endogenous prostaglandins in the development of exercise-induced and post-occlusive hyperemia in human limbs.
    Nowak J; Wennmalm A
    Acta Physiol Scand; 1979 Jul; 106(3):365-9. PubMed ID: 506771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of blood flow and glucose uptake within single skeletal muscles in the awake rabbit.
    Iversen PO; Nicolaysen G
    Acta Physiol Scand; 1990 Nov; 140(3):373-81. PubMed ID: 2082705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the forearm and calf blood flow response to thermal stress during dynamic exercise.
    Nishiyasu T; Shi X; Gillen CM; Mack GW; Nadel ER
    Med Sci Sports Exerc; 1992 Feb; 24(2):213-7. PubMed ID: 1549010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle blood flow during locomotory exercise.
    Laughlin MH; Armstrong RB
    Exerc Sport Sci Rev; 1985; 13():95-136. PubMed ID: 3891377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in muscle sympathetic nerve activity and calf blood flow during combined leg and forearm exercise.
    Saito M; Kagaya A; Ogita F; Shinohara M
    Acta Physiol Scand; 1992 Dec; 146(4):449-56. PubMed ID: 1492562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calf muscle stimulation with the Veinoplus device results in a significant increase in lower limb inflow without generating limb ischemia or pain in patients with peripheral artery disease.
    Abraham P; Mateus V; Bieuzen F; Ouedraogo N; Cisse F; Leftheriotis G
    J Vasc Surg; 2013 Mar; 57(3):714-9. PubMed ID: 23312939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.