These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 12587113)
1. Effects of excipients on hydrate formation in wet masses containing theophylline. Airaksinen S; Luukkonen P; Jørgensen A; Karjalainen M; Rantanen J; Yliruusi J J Pharm Sci; 2003 Mar; 92(3):516-28. PubMed ID: 12587113 [TBL] [Abstract][Full Text] [Related]
2. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy. Jørgensen AC; Airaksinen S; Karjalainen M; Luukkonen P; Rantanen J; Yliruusi J Eur J Pharm Sci; 2004 Sep; 23(1):99-104. PubMed ID: 15324927 [TBL] [Abstract][Full Text] [Related]
3. Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation. Airaksinen S; Karjalainen M; Kivikero N; Westermarck S; Shevchenko A; Rantanen J; Yliruusi J AAPS PharmSciTech; 2005 Oct; 6(2):E311-22. PubMed ID: 16353990 [TBL] [Abstract][Full Text] [Related]
4. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients. Wikström H; Carroll WJ; Taylor LS Pharm Res; 2008 Apr; 25(4):923-35. PubMed ID: 17896097 [TBL] [Abstract][Full Text] [Related]
5. Physical stability of crystal hydrates and their anhydrates in the presence of excipients. Salameh AK; Taylor LS J Pharm Sci; 2006 Feb; 95(2):446-61. PubMed ID: 16380975 [TBL] [Abstract][Full Text] [Related]
6. Impact of formulation and process variables on solid-state stability of theophylline in controlled release formulations. Korang-Yeboah M; Rahman Z; Shah D; Mohammad A; Wu S; Siddiqui A; Khan MA Int J Pharm; 2016 Feb; 499(1-2):20-28. PubMed ID: 26688036 [TBL] [Abstract][Full Text] [Related]
7. Characterization of wet massing behavior of silicified microcrystalline cellulose and alpha-lactose monohydrate using near-infrared spectroscopy. Luukkonen P; Rantanen J; Mäkelä K; Räsänen E; Tenhunen J; Yliruusi J Pharm Dev Technol; 2001; 6(1):1-9. PubMed ID: 11247268 [TBL] [Abstract][Full Text] [Related]
8. Real-time monitoring of changes of adsorbed and crystalline water contents in tablet formulation powder containing theophylline anhydrate at various temperatures during agitated granulation by near-infrared spectroscopy. Otsuka M; Kanai Y; Hattori Y J Pharm Sci; 2014 Sep; 103(9):2924-2936. PubMed ID: 24832393 [TBL] [Abstract][Full Text] [Related]
9. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Buckton G; Yonemochi E; Yoon WL; Moffat AC Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201 [TBL] [Abstract][Full Text] [Related]
10. In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. Wikström H; Marsac PJ; Taylor LS J Pharm Sci; 2005 Jan; 94(1):209-19. PubMed ID: 15761944 [TBL] [Abstract][Full Text] [Related]
11. Processing-induced phase transitions of theophylline--implications on the dissolution of theophylline tablets. Tantry JS; Tank J; Suryanarayanan R J Pharm Sci; 2007 May; 96(5):1434-44. PubMed ID: 17455350 [TBL] [Abstract][Full Text] [Related]
12. Dextrose monohydrate as a non-animal sourced alternative diluent in high shear wet granulation tablet formulations. Mitra B; Wolfe C; Wu SJ Drug Dev Ind Pharm; 2018 May; 44(5):817-828. PubMed ID: 29300107 [TBL] [Abstract][Full Text] [Related]
13. Comparison of torque measurements and near-infrared spectroscopy in characterization of a wet granulation process. Jørgensen AC; Luukkonen P; Rantanen J; Schaefer T; Juppo AM; Yliruusi J J Pharm Sci; 2004 Sep; 93(9):2232-43. PubMed ID: 15295784 [TBL] [Abstract][Full Text] [Related]
14. Role of water in the physical stability of solid dosage formulations. Airaksinen S; Karjalainen M; Shevchenko A; Westermarck S; Leppänen E; Rantanen J; Yliruusi J J Pharm Sci; 2005 Oct; 94(10):2147-65. PubMed ID: 16136577 [TBL] [Abstract][Full Text] [Related]
15. Influence of processing-induced phase transformations on the dissolution of theophylline tablets. Debnath S; Suryanarayanan R AAPS PharmSciTech; 2004 Feb; 5(1):E8. PubMed ID: 15198529 [TBL] [Abstract][Full Text] [Related]
16. Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy. Zeitler JA; Kogermann K; Rantanen J; Rades T; Taday PF; Pepper M; Aaltonen J; Strachan CJ Int J Pharm; 2007 Apr; 334(1-2):78-84. PubMed ID: 17129691 [TBL] [Abstract][Full Text] [Related]
17. Challenges in Transitioning Cocrystals from Bench to Bedside: Dissociation in Prototype Drug Product Environment. Koranne S; Sahoo A; Krzyzaniak JF; Luthra S; Arora KK; Suryanarayanan R Mol Pharm; 2018 Aug; 15(8):3297-3307. PubMed ID: 29947519 [TBL] [Abstract][Full Text] [Related]
18. Novel identification of pseudopolymorphic changes of theophylline during wet granulation using near infrared spectroscopy. Räsänen E; Rantanen J; Jørgensen A; Karjalainen M; Paakkari T; Yliruusi J J Pharm Sci; 2001 Mar; 90(3):389-96. PubMed ID: 11170031 [TBL] [Abstract][Full Text] [Related]
19. Complex dielectric properties of microcrystalline cellulose, anhydrous lactose, and α-lactose monohydrate powders using a microwave-based open-reflection resonator sensor. Sung PF; Hsieh YL; Angonese K; Dunn D; King RJ; Machbitz R; Christianson A; Chappell WJ; Taylor LS; Harris MT J Pharm Sci; 2011 Jul; 100(7):2920-34. PubMed ID: 21328582 [TBL] [Abstract][Full Text] [Related]
20. Twin screw granulation as a simple and efficient tool for continuous wet granulation. Keleb EI; Vermeire A; Vervaet C; Remon JP Int J Pharm; 2004 Apr; 273(1-2):183-94. PubMed ID: 15010142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]