These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 12588001)
1. Preproenkephalin-like immunoreactive and calcium-binding proteins-like immunoreactive double-labelled neurons in the spinal trigeminal nucleus caudalis of the rat. Wang YY; Wu SX; Li YQ Histochem J; 2002 May; 34(5):241-5. PubMed ID: 12588001 [TBL] [Abstract][Full Text] [Related]
2. Co-existence of protein kinase C gamma and calcium-binding proteins in neurons of the medullary dorsal horn of the rat. Ni TS; Wu SX; Li YQ Neurosignals; 2002; 11(2):88-94. PubMed ID: 12077482 [TBL] [Abstract][Full Text] [Related]
3. Co-existence of calcium-binding proteins in neurons of the medullary dorsal horn of the rat. Li YQ; Wu SX; Li JL; Kaneko T; Mizuno N Neurosci Lett; 2000 Jun; 286(2):103-6. PubMed ID: 10825647 [TBL] [Abstract][Full Text] [Related]
4. Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Leuba G; Saini K Vis Neurosci; 1996; 13(6):997-1009. PubMed ID: 8961531 [TBL] [Abstract][Full Text] [Related]
5. The colocalization of parvalbumin and calbindin-D28k with GABA in the subnucleus caudalis of the rat spinal trigeminal nucleus. Polgár E; Antal M Exp Brain Res; 1995; 103(3):402-8. PubMed ID: 7789446 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Ren K; Ruda MA Brain Res Brain Res Rev; 1994 May; 19(2):163-79. PubMed ID: 8061685 [TBL] [Abstract][Full Text] [Related]
7. Colocalization of parvalbumin, calretinin and calbindin D-28k in human cortical and subcortical visual structures. Leuba G; Saini K J Chem Neuroanat; 1997 Jun; 13(1):41-52. PubMed ID: 9271194 [TBL] [Abstract][Full Text] [Related]
8. Neurochemical features of enkephalinergic neurons in the mouse trigeminal subnucleus caudalis. Huang J; Wang W; Chen J; Ge SN; Wei YY; Wang YY; Kaneko T; Li YQ; Wu SX Neurochem Int; 2011 Jan; 58(1):44-51. PubMed ID: 20974201 [TBL] [Abstract][Full Text] [Related]
9. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Alcántara S; Ferrer I; Soriano E Anat Embryol (Berl); 1993 Jul; 188(1):63-73. PubMed ID: 8214625 [TBL] [Abstract][Full Text] [Related]
10. A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Taki K; Kaneko T; Mizuno N Neuroscience; 2000; 98(2):221-31. PubMed ID: 10854753 [TBL] [Abstract][Full Text] [Related]
11. Partial coexistence of neuropeptide Y and calbindin D28k in the trigeminal ganglion following peripheral axotomy of the inferior alveolar nerve in the rat. Wakisaka S; Takikita S; Youn SH; Kurisu K Brain Res; 1996 Jan; 707(2):228-34. PubMed ID: 8919300 [TBL] [Abstract][Full Text] [Related]
12. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. Gabbott PL; Bacon SJ J Comp Neurol; 1996 Jan; 364(4):567-608. PubMed ID: 8821449 [TBL] [Abstract][Full Text] [Related]
13. The distribution of two calcium binding proteins, calbindin D-28K and parvalbumin, in the entorhinal cortex of the adult mouse. Fujimaru Y; Kosaka T Neurosci Res; 1996 Mar; 24(4):329-43. PubMed ID: 8861103 [TBL] [Abstract][Full Text] [Related]
14. Distribution of the parvalbumin, calbindin-D28K and calretinin immunoreactivity in globus pallidus of the Brazilian short-tailed opossum (Monodelphis domestica). Domaradzka-Pytel B; Majak K; Spodnik J; Olkowicz S; Turlejski K; Djavadian RL; Moryś J Acta Neurobiol Exp (Wars); 2007; 67(4):421-38. PubMed ID: 18320720 [TBL] [Abstract][Full Text] [Related]
15. Transient colocalization of parvalbumin and calbindin D28k in the postnatal cerebral cortex: evidence for a phenotypic shift in developing nonpyramidal neurons. Alcantara S; de Lecea L; Del Rio JA; Ferrer I; Soriano E Eur J Neurosci; 1996 Jul; 8(7):1329-39. PubMed ID: 8758940 [TBL] [Abstract][Full Text] [Related]
16. Calretinin- and parvalbumin-immunoreactive neurons in the rat main olfactory bulb do not express NADPH-diaphorase activity. Briñón JG; Alonso JR; García-Ojeda E; Crespo C; Arévalo R; Aijón J J Chem Neuroanat; 1997 Oct; 13(4):253-64. PubMed ID: 9412907 [TBL] [Abstract][Full Text] [Related]
17. Age-related changes in calbindin-D28k, parvalbumin, and calretinin immunoreactivity in the dog main olfactory bulb. Choi JH; Lee CH; Yoo KY; Hwang IK; Lee IS; Lee YL; Shin HC; Won MH Cell Mol Neurobiol; 2010 Jan; 30(1):1-12. PubMed ID: 19533334 [TBL] [Abstract][Full Text] [Related]
18. Axonal expression sites of tyrosine hydroxylase, calretinin- and calbindin-immunoreactivity in striato-pallidal and septal nuclei of the rat brain: a double-immunolabelling study. Seifert U; Härtig W; Grosche J; Brückner G; Riedel A; Brauer K Brain Res; 1998 Jun; 795(1-2):227-46. PubMed ID: 9622641 [TBL] [Abstract][Full Text] [Related]
19. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. Defelipe J; González-Albo MC; Del Río MR; Elston GN J Comp Neurol; 1999 Sep; 412(3):515-26. PubMed ID: 10441237 [TBL] [Abstract][Full Text] [Related]
20. Co-existence of calcium-binding proteins and gamma-aminobutyric acid or glycine in neurons of the rat medullary dorsal horn. Wang W; Wu SX; Li YQ Chin Med J (Engl); 2004 Mar; 117(3):430-3. PubMed ID: 15043786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]