BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 12588039)

  • 21. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.
    Wang H; Feng J; Wang H
    Technol Health Care; 2017 Jul; 25(S1):325-336. PubMed ID: 28582921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Screening CAD Tool for the Detection of Microcalcification Clusters in Mammograms.
    Karale VA; Ebenezer JP; Chakraborty J; Singh T; Sadhu A; Khandelwal N; Mukhopadhyay S
    J Digit Imaging; 2019 Oct; 32(5):728-745. PubMed ID: 31388866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network.
    Chan HP; Lo SC; Sahiner B; Lam KL; Helvie MA
    Med Phys; 1995 Oct; 22(10):1555-67. PubMed ID: 8551980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study.
    Reiser I; Nishikawa RM; Edwards AV; Kopans DB; Schmidt RA; Papaioannou J; Moore RH
    Med Phys; 2008 Apr; 35(4):1486-93. PubMed ID: 18491543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.
    Carton AK; Bosmans H; Vandenbroucke D; Souverijns G; Van Ongeval C; Dragusin O; Marchal G
    Med Phys; 2004 Jul; 31(7):2165-76. PubMed ID: 15305471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms.
    Zhang W; Doi K; Giger ML; Nishikawa RM; Schmidt RA
    Med Phys; 1996 Apr; 23(4):595-601. PubMed ID: 8860907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated feature set selection and its application to MCC identification in digital mammograms for breast cancer detection.
    Huang YJ; Chan DY; Cheng DC; Ho YJ; Tsai PP; Shen WC; Chen RF
    Sensors (Basel); 2013 Apr; 13(4):4855-75. PubMed ID: 23580053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmentation of suspicious clustered microcalcifications in mammograms.
    Gavrielides MA; Lo JY; Vargas-Voracek R; Floyd CE
    Med Phys; 2000 Jan; 27(1):13-22. PubMed ID: 10659733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A CADx scheme for mammography empowered with topological information from clustered microcalcifications' atlases.
    Andreadis II; Spyrou GM; Nikita KS
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):166-73. PubMed ID: 25073178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms.
    Nakayama R; Uchiyama Y; Yamamoto K; Watanabe R; Namba K
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):273-83. PubMed ID: 16485756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving performance of computer-aided detection scheme by combining results from two machine learning classifiers.
    Park SC; Pu J; Zheng B
    Acad Radiol; 2009 Mar; 16(3):266-74. PubMed ID: 19201355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Region-based wavelet coding methods for digital mammography.
    Penedo M; Pearlman WA; Tahoces PG; Souto M; Vidal JJ
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1288-96. PubMed ID: 14552582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radial gradient-based segmentation of mammographic microcalcifications: observer evaluation and effect on CAD performance.
    Paquerault S; Yarusso LM; Papaioannou J; Jiang Y; Nishikawa RM
    Med Phys; 2004 Sep; 31(9):2648-57. PubMed ID: 15487748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3-D reconstruction of microcalcification clusters using stereo imaging: algorithm and mammographic unit calibration.
    Daul C; Graebling P; Tiedeu A; Wolf D
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2058-73. PubMed ID: 16366229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of a priori information in the detection of mammographic microcalcifications to improve their classification.
    Salfity MF; Nishikawa RM; Jiang Y; Papaioannou J
    Med Phys; 2003 May; 30(5):823-31. PubMed ID: 12772990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of automatic mass detection and segmentation in mammographic images.
    Oliver A; Freixenet J; Martí J; Pérez E; Pont J; Denton ER; Zwiggelaar R
    Med Image Anal; 2010 Apr; 14(2):87-110. PubMed ID: 20071209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a variable dose acquisition technique for microcalcification and mass detection in digital breast tomosynthesis.
    Das M; Gifford HC; O'Connor JM; Glick SJ
    Med Phys; 2009 Jun; 36(6):1976-84. PubMed ID: 19610286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning contextual relationships in mammograms using a hierarchical pyramid neural network.
    Sajda P; Spence C; Pearson J
    IEEE Trans Med Imaging; 2002 Mar; 21(3):239-50. PubMed ID: 11989848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. False positive reduction in mammographic mass detection using local binary patterns.
    Oliver A; Lladó X; Freixenet J; Martí J
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):286-93. PubMed ID: 18051070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Image segmentation feature selection and pattern classification for mammographic microcalcifications.
    Fu JC; Lee SK; Wong ST; Yeh JY; Wang AH; Wu HK
    Comput Med Imaging Graph; 2005 Sep; 29(6):419-29. PubMed ID: 16002263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.