BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 12588196)

  • 1. Mechanism of nickel assault on the zinc finger of DNA repair protein XPA.
    Bal W; Schwerdtle T; Hartwig A
    Chem Res Toxicol; 2003 Feb; 16(2):242-8. PubMed ID: 12588196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co(II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity.
    Kopera E; Schwerdtle T; Hartwig A; Bal W
    Chem Res Toxicol; 2004 Nov; 17(11):1452-8. PubMed ID: 15540943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal binding mediated conformational change of XPA protein:a potential cytotoxic mechanism of nickel in the nucleotide excision repair.
    Hu J; Hu Z; Zhang Y; Gou X; Mu Y; Wang L; Xie XQ
    J Mol Model; 2016 Jul; 22(7):156. PubMed ID: 27307058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative electrospray ionization mass spectrometry of zinc finger oxidation: the reaction of XPA zinc finger with H(2)O(2).
    Smirnova J; Zhukova L; Witkiewicz-Kucharczyk A; Kopera E; Oledzki J; Wysłouch-Cieszyńska A; Palumaa P; Hartwig A; Bal W
    Anal Biochem; 2007 Oct; 369(2):226-31. PubMed ID: 17577569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological levels of glutathione enhance Zn(II) binding by a Cys4 zinc finger.
    Piatek K; Hartwig A; Bal W
    Biochem Biophys Res Commun; 2009 Nov; 389(2):265-8. PubMed ID: 19716810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monomethylarsonous acid destroys a tetrathiolate zinc finger much more efficiently than inorganic arsenite: mechanistic considerations and consequences for DNA repair inhibition.
    Piatek K; Schwerdtle T; Hartwig A; Bal W
    Chem Res Toxicol; 2008 Mar; 21(3):600-6. PubMed ID: 18220366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair.
    Asmuss M; Mullenders LH; Eker A; Hartwig A
    Carcinogenesis; 2000 Nov; 21(11):2097-104. PubMed ID: 11062174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended X-ray absorption fine structure evidence for a single metal binding domain in Xenopus laevis nucleotide excision repair protein XPA.
    Buchko GW; Iakoucheva LM; Kennedy MA; Ackerman EJ; Hess NJ
    Biochem Biophys Res Commun; 1999 Jan; 254(1):109-13. PubMed ID: 9920741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential binding of human XPA to the mitomycin C-DNA interstrand crosslink and modulation by arsenic and cadmium.
    Mustra DJ; Warren AJ; Wilcox DE; Hamilton JW
    Chem Biol Interact; 2007 Jun; 168(2):159-68. PubMed ID: 17512921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of the XPA zinc finger with S-nitrosoglutathione.
    Smirnova J; Zhukova L; Witkiewicz-Kucharczyk A; Kopera E; Oledzki J; Wysłouch-Cieszyńska A; Palumaa P; Hartwig A; Bal W
    Chem Res Toxicol; 2008 Feb; 21(2):386-92. PubMed ID: 18171019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human nucleotide excision repair protein XPA: 1H NMR and CD solution studies of a synthetic peptide fragment corresponding to the zinc-binding domain (101-141).
    Buchko GW; Kennedy MA
    J Biomol Struct Dyn; 1997 Jun; 14(6):677-90. PubMed ID: 9195337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and thermodynamics of zinc(II) and arsenic(III) binding to XPA and PARP-1 zinc finger peptides.
    Huestis J; Zhou X; Chen L; Feng C; Hudson LG; Liu KJ
    J Inorg Biochem; 2016 Oct; 163():45-52. PubMed ID: 27521476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic determination of the binding affinity of zinc to the DNA-binding domains of nuclear hormone receptors.
    Payne JC; Rous BW; Tenderholt AL; Godwin HA
    Biochemistry; 2003 Dec; 42(48):14214-24. PubMed ID: 14640689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human nucleotide excision repair protein XPA: extended X-ray absorption fine-structure evidence for a metal-binding domain.
    Hess NJ; Buchko GW; Conradson SD; Espinosa FJ; Ni S; Thrall BD; Kennedy MA
    Protein Sci; 1998 Sep; 7(9):1970-5. PubMed ID: 9761477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1.
    Chen X; Agarwal A; Giedroc DP
    Biochemistry; 1998 Aug; 37(32):11152-61. PubMed ID: 9698361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis.
    Witkiewicz-Kucharczyk A; Bal W
    Toxicol Lett; 2006 Mar; 162(1):29-42. PubMed ID: 16310985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of zinc-finger motif in redox regulation of human replication protein A.
    Wang M; You JS; Lee SH
    Antioxid Redox Signal; 2001 Aug; 3(4):657-69. PubMed ID: 11554452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of DNA binding specificity by nickel (II) substitution in three zinc (II) fingers of transcription factor Sp1.
    Nagaoka M; Kuwahara J; Sugiura Y
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1515-20. PubMed ID: 8352809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic determination of the thermodynamics of cobalt and zinc binding to GATA proteins.
    Ghering AB; Shokes JE; Scott RA; Omichinski JG; Godwin HA
    Biochemistry; 2004 Jul; 43(26):8346-55. PubMed ID: 15222747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.