These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 12588196)
1. Mechanism of nickel assault on the zinc finger of DNA repair protein XPA. Bal W; Schwerdtle T; Hartwig A Chem Res Toxicol; 2003 Feb; 16(2):242-8. PubMed ID: 12588196 [TBL] [Abstract][Full Text] [Related]
2. Co(II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity. Kopera E; Schwerdtle T; Hartwig A; Bal W Chem Res Toxicol; 2004 Nov; 17(11):1452-8. PubMed ID: 15540943 [TBL] [Abstract][Full Text] [Related]
3. Metal binding mediated conformational change of XPA protein:a potential cytotoxic mechanism of nickel in the nucleotide excision repair. Hu J; Hu Z; Zhang Y; Gou X; Mu Y; Wang L; Xie XQ J Mol Model; 2016 Jul; 22(7):156. PubMed ID: 27307058 [TBL] [Abstract][Full Text] [Related]
4. Quantitative electrospray ionization mass spectrometry of zinc finger oxidation: the reaction of XPA zinc finger with H(2)O(2). Smirnova J; Zhukova L; Witkiewicz-Kucharczyk A; Kopera E; Oledzki J; Wysłouch-Cieszyńska A; Palumaa P; Hartwig A; Bal W Anal Biochem; 2007 Oct; 369(2):226-31. PubMed ID: 17577569 [TBL] [Abstract][Full Text] [Related]
5. Physiological levels of glutathione enhance Zn(II) binding by a Cys4 zinc finger. Piatek K; Hartwig A; Bal W Biochem Biophys Res Commun; 2009 Nov; 389(2):265-8. PubMed ID: 19716810 [TBL] [Abstract][Full Text] [Related]
6. Monomethylarsonous acid destroys a tetrathiolate zinc finger much more efficiently than inorganic arsenite: mechanistic considerations and consequences for DNA repair inhibition. Piatek K; Schwerdtle T; Hartwig A; Bal W Chem Res Toxicol; 2008 Mar; 21(3):600-6. PubMed ID: 18220366 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Asmuss M; Mullenders LH; Eker A; Hartwig A Carcinogenesis; 2000 Nov; 21(11):2097-104. PubMed ID: 11062174 [TBL] [Abstract][Full Text] [Related]
8. Extended X-ray absorption fine structure evidence for a single metal binding domain in Xenopus laevis nucleotide excision repair protein XPA. Buchko GW; Iakoucheva LM; Kennedy MA; Ackerman EJ; Hess NJ Biochem Biophys Res Commun; 1999 Jan; 254(1):109-13. PubMed ID: 9920741 [TBL] [Abstract][Full Text] [Related]
9. Preferential binding of human XPA to the mitomycin C-DNA interstrand crosslink and modulation by arsenic and cadmium. Mustra DJ; Warren AJ; Wilcox DE; Hamilton JW Chem Biol Interact; 2007 Jun; 168(2):159-68. PubMed ID: 17512921 [TBL] [Abstract][Full Text] [Related]
10. Reaction of the XPA zinc finger with S-nitrosoglutathione. Smirnova J; Zhukova L; Witkiewicz-Kucharczyk A; Kopera E; Oledzki J; Wysłouch-Cieszyńska A; Palumaa P; Hartwig A; Bal W Chem Res Toxicol; 2008 Feb; 21(2):386-92. PubMed ID: 18171019 [TBL] [Abstract][Full Text] [Related]
11. Human nucleotide excision repair protein XPA: 1H NMR and CD solution studies of a synthetic peptide fragment corresponding to the zinc-binding domain (101-141). Buchko GW; Kennedy MA J Biomol Struct Dyn; 1997 Jun; 14(6):677-90. PubMed ID: 9195337 [TBL] [Abstract][Full Text] [Related]
12. Kinetics and thermodynamics of zinc(II) and arsenic(III) binding to XPA and PARP-1 zinc finger peptides. Huestis J; Zhou X; Chen L; Feng C; Hudson LG; Liu KJ J Inorg Biochem; 2016 Oct; 163():45-52. PubMed ID: 27521476 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic determination of the binding affinity of zinc to the DNA-binding domains of nuclear hormone receptors. Payne JC; Rous BW; Tenderholt AL; Godwin HA Biochemistry; 2003 Dec; 42(48):14214-24. PubMed ID: 14640689 [TBL] [Abstract][Full Text] [Related]
14. Human nucleotide excision repair protein XPA: extended X-ray absorption fine-structure evidence for a metal-binding domain. Hess NJ; Buchko GW; Conradson SD; Espinosa FJ; Ni S; Thrall BD; Kennedy MA Protein Sci; 1998 Sep; 7(9):1970-5. PubMed ID: 9761477 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Chen X; Agarwal A; Giedroc DP Biochemistry; 1998 Aug; 37(32):11152-61. PubMed ID: 9698361 [TBL] [Abstract][Full Text] [Related]
16. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Witkiewicz-Kucharczyk A; Bal W Toxicol Lett; 2006 Mar; 162(1):29-42. PubMed ID: 16310985 [TBL] [Abstract][Full Text] [Related]
17. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663 [TBL] [Abstract][Full Text] [Related]
18. Role of zinc-finger motif in redox regulation of human replication protein A. Wang M; You JS; Lee SH Antioxid Redox Signal; 2001 Aug; 3(4):657-69. PubMed ID: 11554452 [TBL] [Abstract][Full Text] [Related]
19. Alteration of DNA binding specificity by nickel (II) substitution in three zinc (II) fingers of transcription factor Sp1. Nagaoka M; Kuwahara J; Sugiura Y Biochem Biophys Res Commun; 1993 Aug; 194(3):1515-20. PubMed ID: 8352809 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic determination of the thermodynamics of cobalt and zinc binding to GATA proteins. Ghering AB; Shokes JE; Scott RA; Omichinski JG; Godwin HA Biochemistry; 2004 Jul; 43(26):8346-55. PubMed ID: 15222747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]