These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12588416)

  • 1. The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae.
    Ginsburg I
    APMIS; 2002 Nov; 110(11):753-70. PubMed ID: 12588416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics?; it is enigmatic why this concept is consistently disregarded.
    Ginsburg I
    Med Hypotheses; 2004; 62(3):367-74. PubMed ID: 14975505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-drug strategies are necessary to inhibit the synergistic mechanism causing tissue damage and organ failure in post infectious sequelae.
    Ginsburg I
    Inflammopharmacology; 1999; 7(3):207-17. PubMed ID: 17638092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of lipoteichoic acid in infection and inflammation.
    Ginsburg I
    Lancet Infect Dis; 2002 Mar; 2(3):171-9. PubMed ID: 11944187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae?
    Ginsburg I; Ward PA; Varani J
    FEMS Immunol Med Microbiol; 1999 Sep; 25(4):325-38. PubMed ID: 10497863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriolysis is inhibited by hydrogen peroxide and by proteases.
    Ginsburg I
    Agents Actions; 1989 Nov; 28(3-4):238-42. PubMed ID: 2688383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriolysis - a mere laboratory curiosity?
    Ginsburg I; Koren E
    Crit Rev Microbiol; 2018 Sep; 44(5):609-618. PubMed ID: 29782199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic polyelectrolytes from leukocytes might kill bacteria by activating their autolytic systems: enigmatically, the relevance of this phenomenon to post-infectious sequelae is disregarded.
    Ginsburg I
    Intensive Care Med; 2002 Aug; 28(8):1188. PubMed ID: 12400517
    [No Abstract]   [Full Text] [Related]  

  • 9. Are cationic antimicrobial peptides also 'double-edged swords'?
    Ginsburg I; Koren E
    Expert Rev Anti Infect Ther; 2008 Aug; 6(4):453-62. PubMed ID: 18662113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of leukocyte hydrolases on bacteria XVI. Activation by leukocyte factors and cationic substances of autolytic enzymes in Staphylococcus aureus: modulation by anionic polyelectrolytes in relation to survival of bacteria in inflammatory exudates.
    Ginsburg I; Lahav M; Giesbrecht P
    Inflammation; 1982 Sep; 6(3):269-84. PubMed ID: 6182097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biochemistry of bacteriolysis: paradoxes, facts and myths.
    Ginsburg I
    Microbiol Sci; 1988 May; 5(5):137-42. PubMed ID: 3079229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of leukocytes and their hydrolases with bacteria in vitro and in vivo: the modification of the bactericidal and bacteriolytic reactions by cationic and anionic macromolecular substances and by anti-inflammatory agents.
    Ginsburg I; Lahav M; Ne'eman N; Duchan Z; Chanes S; Sela MN
    Agents Actions; 1976 Feb; 6(1-3):292-305. PubMed ID: 941804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective.
    Ginsburg I; van Heerden PV; Koren E
    J Inflamm Res; 2017; 10():7-15. PubMed ID: 28203100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments.
    Wittekind M; Schuch R
    Curr Opin Microbiol; 2016 Oct; 33():18-24. PubMed ID: 27257994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of the antistaphylococcal action of lactoferrin and lysozyme.
    Leitch EC; Willcox MDP
    J Med Microbiol; 1999 Sep; 48(9):867-871. PubMed ID: 10482299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes.
    Bierbaum G; Sahl HG
    Arch Microbiol; 1985 Apr; 141(3):249-54. PubMed ID: 4004448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic antimicrobial peptides and their multifunctional role in the immune system.
    Scott MG; Hancock RE
    Crit Rev Immunol; 2000; 20(5):407-31. PubMed ID: 11145218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of O-antigenic polysaccharide of Escherichia coli on endotoxin neutralizing activity of lysozyme.
    Liang AH; Sugawara N; Ohno N; Adachi Y; Yadomae T
    FEMS Immunol Med Microbiol; 1998 May; 21(1):79-87. PubMed ID: 9657324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs.
    Bhattacharjya S
    Curr Med Chem; 2010; 17(27):3080-93. PubMed ID: 20629624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of leukocyte hydrolases on bacteria. X. The role played by leukocyte factors, cationic polyelectrolytes, and by membrane-damaging agents in the lysis of Staphylococcus aureus: relation to chronic inflammatory processes.
    Lahav M; Ginsburg I
    Inflammation; 1977 Jun; 2(2):165-77. PubMed ID: 33120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.