These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12588559)

  • 1. The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.
    Critchley MM; Cromar NJ; McClure NC; Fallowfield HJ
    J Appl Microbiol; 2003; 94(3):501-7. PubMed ID: 12588559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilms and microbially influenced cuprosolvency in domestic copper plumbing systems.
    Critchley MM; Cromar NJ; McClure N; Fallowfield HJ
    J Appl Microbiol; 2001 Oct; 91(4):646-51. PubMed ID: 11576301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion.
    Pavissich JP; Vargas IT; González B; Pastén PA; Pizarro GE
    J Appl Microbiol; 2010 Sep; 109(3):771-82. PubMed ID: 20337760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems.
    Bolton N; Critchley M; Fabien R; Cromar N; Fallowfield H
    J Appl Microbiol; 2010 Jul; 109(1):239-47. PubMed ID: 20070443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of microbial involvement in the elevation of copper levels in drinking water.
    Dutkiewicz C; Fallowfield H
    J Appl Microbiol; 1998 Sep; 85(3):597-602. PubMed ID: 9750289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considering a Utility-Centric Framework Based on "Minimum Orthophosphate" Criteria for Mitigation of Elevated Cuprosolvency in Drinking Water.
    Kriss RB; Smith E; Byrd G; Schock M; Edwards MA
    Environ Sci Technol; 2024 Mar; 58(12):5606-5615. PubMed ID: 38470122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiological influences in 'blue water' copper corrosion.
    Critchley MM; Pasetto R; O'Halloran RJ
    J Appl Microbiol; 2004; 97(3):590-7. PubMed ID: 15281940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion.
    Vargas IT; Alsina MA; Pavissich JP; Jeria GA; Pastén PA; Walczak M; Pizarro GE
    Bioelectrochemistry; 2014 Jun; 97():15-22. PubMed ID: 24355512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory studies on biomachining of copper using Staphylococcus sp.
    Shikata S; Sreekumari KR; Nandakumar K; Ozawa M; Kikuchi Y
    Biofouling; 2009; 25(6):557-62. PubMed ID: 19440892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of microbial growth to orthophosphate and organic carbon influx in copper and plastic based plumbing water systems.
    Park SK; Kim YK; Choi SC
    Chemosphere; 2008 Jul; 72(7):1027-34. PubMed ID: 18495203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states.
    Gomes IB; Simões LC; Simões M
    Sci Total Environ; 2018 Dec; 643():1348-1356. PubMed ID: 30189551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.
    Lehtola MJ; Miettinen IT; Keinänen MM; Kekki TK; Laine O; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2004 Oct; 38(17):3769-79. PubMed ID: 15350429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.
    Moritz MM; Flemming HC; Wingender J
    Int J Hyg Environ Health; 2010 Jun; 213(3):190-7. PubMed ID: 20556878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing.
    Rhoads WJ; Pruden A; Edwards MA
    Environ Sci Technol; 2017 Jun; 51(12):7065-7075. PubMed ID: 28513143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial community of biofilms developed under different water supply conditions in a distribution system.
    Sun H; Shi B; Bai Y; Wang D
    Sci Total Environ; 2014 Feb; 472():99-107. PubMed ID: 24291134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of surface copper content on biofilm formation by drinking water bacteria.
    Gomes IB; Simões LC; Simões M
    RSC Adv; 2019 Oct; 9(55):32184-32196. PubMed ID: 35530774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling MIC copper release from drinking water pipes.
    Pizarro GE; Vargas IT; Pastén PA; Calle GR
    Bioelectrochemistry; 2014 Jun; 97():23-33. PubMed ID: 24398414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface copper content on
    Gomes IB; Simões LC; Simões M
    Biofouling; 2020 Jan; 36(1):1-13. PubMed ID: 31997661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.
    Sun H; Shi B; Lytle DA; Bai Y; Wang D
    Environ Sci Process Impacts; 2014 Mar; 16(3):576-85. PubMed ID: 24509822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Model for Estimating the Impact of Orthophosphate on Copper in Water.
    Lytle DA; Schock MR; Leo J; Barnes B
    J Am Water Works Assoc; 2018 Oct; 110(10):E1-E15. PubMed ID: 32636529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.