BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12588898)

  • 1. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G; Barrett EF
    J Physiol; 2003 Apr; 548(Pt 2):425-38. PubMed ID: 12588898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+].
    Talbot JD; David G; Barrett EF
    J Neurophysiol; 2003 Jul; 90(1):491-502. PubMed ID: 12672777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent.
    David G; Barrett EF
    J Neurosci; 2000 Oct; 20(19):7290-6. PubMed ID: 11007886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial clearance of cytosolic Ca(2+) in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca(2+)].
    David G
    J Neurosci; 1999 Sep; 19(17):7495-506. PubMed ID: 10460256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release.
    García-Chacón LE; Nguyen KT; David G; Barrett EF
    J Physiol; 2006 Aug; 574(Pt 3):663-75. PubMed ID: 16613870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation-induced changes in [Ca2+] in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):83-96. PubMed ID: 9350620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals.
    Tian L; Prior C; Dempster J; Marshall IG
    J Physiol; 1994 May; 476(3):517-29. PubMed ID: 7914535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):59-65. PubMed ID: 9547381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle.
    McCarron JG; Muir TC
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):149-61. PubMed ID: 10066930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic function is altered in snake K+-depolarized motor nerve terminals containing compromised mitochondria.
    Calupca MA; Prior C; Merriam LA; Hendricks GM; Parsons RL
    J Physiol; 2001 Apr; 532(Pt 1):217-27. PubMed ID: 11283236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals.
    Calupca MA; Hendricks GM; Hardwick JC; Parsons RL
    J Neurophysiol; 1999 Feb; 81(2):498-506. PubMed ID: 10036254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity.
    Narita K; Akita T; Hachisuka J; Huang S; Ochi K; Kuba K
    J Gen Physiol; 2000 Apr; 115(4):519-32. PubMed ID: 10736317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of calcium channel blockers on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Lee DT; Sosa MA; Mosier DR
    Synapse; 1993 Dec; 15(4):251-62. PubMed ID: 7908759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
    Billups B; Forsythe ID
    J Neurosci; 2002 Jul; 22(14):5840-7. PubMed ID: 12122046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-dependent increase in quantal secretion induced by brevetoxin-3 in Ca2+-free medium is associated with depletion of synaptic vesicles and swelling of motor nerve terminals in situ.
    Meunier FA; Colasante C; Molgo J
    Neuroscience; 1997 Jun; 78(3):883-93. PubMed ID: 9153666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation-induced mitochondrial [Ca2+] elevations in mouse motor terminals: comparison of wild-type with SOD1-G93A.
    Vila L; Barrett EF; Barrett JN
    J Physiol; 2003 Jun; 549(Pt 3):719-28. PubMed ID: 12717010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of intracellular Ca2+ in stimulation-induced increases in transmitter release at the frog neuromuscular junction.
    Zengel JE; Sosa MA; Poage RE; Mosier DR
    J Gen Physiol; 1994 Aug; 104(2):337-55. PubMed ID: 7807052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ.
    Chouhan AK; Zhang J; Zinsmaier KE; Macleod GT
    J Neurosci; 2010 Feb; 30(5):1869-81. PubMed ID: 20130196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.