These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 12588988)
1. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Hoque M; Young TM; Lee CG; Serrero G; Mathews MB; Pe'ery T Mol Cell Biol; 2003 Mar; 23(5):1688-702. PubMed ID: 12588988 [TBL] [Abstract][Full Text] [Related]
2. Granulin and granulin repeats interact with the Tat.P-TEFb complex and inhibit Tat transactivation. Hoque M; Tian B; Mathews MB; Pe'ery T J Biol Chem; 2005 Apr; 280(14):13648-57. PubMed ID: 15653695 [TBL] [Abstract][Full Text] [Related]
3. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Garber ME; Mayall TP; Suess EM; Meisenhelder J; Thompson NE; Jones KA Mol Cell Biol; 2000 Sep; 20(18):6958-69. PubMed ID: 10958691 [TBL] [Abstract][Full Text] [Related]
4. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate. Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292 [TBL] [Abstract][Full Text] [Related]
5. Progranulin (granulin/epithelin precursor) and its constituent granulin repeats repress transcription from cellular promoters. Hoque M; Mathews MB; Pe'ery T J Cell Physiol; 2010 Apr; 223(1):224-33. PubMed ID: 20054825 [TBL] [Abstract][Full Text] [Related]
6. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Michels AA; Nguyen VT; Fraldi A; Labas V; Edwards M; Bonnet F; Lania L; Bensaude O Mol Cell Biol; 2003 Jul; 23(14):4859-69. PubMed ID: 12832472 [TBL] [Abstract][Full Text] [Related]
7. The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Young TM; Wang Q; Pe'ery T; Mathews MB Mol Cell Biol; 2003 Sep; 23(18):6373-84. PubMed ID: 12944466 [TBL] [Abstract][Full Text] [Related]
8. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616 [TBL] [Abstract][Full Text] [Related]
9. Developmental regulators containing the I-mfa domain interact with T cyclins and Tat and modulate transcription. Wang Q; Young TM; Mathews MB; Pe'ery T J Mol Biol; 2007 Mar; 367(3):630-46. PubMed ID: 17289077 [TBL] [Abstract][Full Text] [Related]
10. Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression. Fujinaga K; Irwin D; Geyer M; Peterlin BM J Virol; 2002 Nov; 76(21):10873-81. PubMed ID: 12368330 [TBL] [Abstract][Full Text] [Related]
11. Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase. Chen D; Zhou Q Mol Cell Biol; 1999 Apr; 19(4):2863-71. PubMed ID: 10082552 [TBL] [Abstract][Full Text] [Related]
12. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. Sawaya BE; Khalili K; Gordon J; Taube R; Amini S J Biol Chem; 2000 Nov; 275(45):35209-14. PubMed ID: 10931842 [TBL] [Abstract][Full Text] [Related]
13. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664 [TBL] [Abstract][Full Text] [Related]
14. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. Fujinaga K; Cujec TP; Peng J; Garriga J; Price DH; Graña X; Peterlin BM J Virol; 1998 Sep; 72(9):7154-9. PubMed ID: 9696809 [TBL] [Abstract][Full Text] [Related]
15. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. Isel C; Karn J J Mol Biol; 1999 Jul; 290(5):929-41. PubMed ID: 10438593 [TBL] [Abstract][Full Text] [Related]
17. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. Zhou M; Nekhai S; Bharucha DC; Kumar A; Ge H; Price DH; Egly JM; Brady JN J Biol Chem; 2001 Nov; 276(48):44633-40. PubMed ID: 11572868 [TBL] [Abstract][Full Text] [Related]
18. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression. Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359 [TBL] [Abstract][Full Text] [Related]
19. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Ivanov D; Kwak YT; Guo J; Gaynor RB Mol Cell Biol; 2000 May; 20(9):2970-83. PubMed ID: 10757782 [TBL] [Abstract][Full Text] [Related]
20. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation. Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]