BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12589570)

  • 1. Characterization of calcium binding properties of lithostathine.
    Lee BI; Mustafi D; Cho W; Nakagawa Y
    J Biol Inorg Chem; 2003 Feb; 8(3):341-7. PubMed ID: 12589570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Ca(2+)-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin using vanadyl ions: different metal binding properties in strong and weak inhibitor proteins revealed by EPR and ENDOR.
    Mustafi D; Nakagawa Y
    Biochemistry; 1996 Nov; 35(47):14703-9. PubMed ID: 8942630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of human lithostathine, the pancreatic inhibitor of stone formation.
    Bertrand JA; Pignol D; Bernard JP; Verdier JM; Dagorn JC; Fontecilla-Camps JC
    EMBO J; 1996 Jun; 15(11):2678-84. PubMed ID: 8654365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insight into the role of human pancreatic lithostathine.
    Patard L; Lallemand JY; Stoven V
    JOP; 2003 Mar; 4(2):92-103. PubMed ID: 12629266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Single amino acid substitutions in the Ca2+-binding site of recoverin.II.The unusual behavior of the protein upon the binding of calcium ions].
    Uverskiĭ VN; Permiakov SE; Senin II; Cherskaia AM; Shul'ga-Morskoĭ SV; Zinchenko DV; Alekseev AM; Zargarov AA; Lipkin VM; Filippov PP; Permiakov EA
    Bioorg Khim; 2000 Mar; 26(3):173-8. PubMed ID: 10816814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pancreatic lithogenesis].
    Sarles H
    Ann Gastroenterol Hepatol (Paris); 1986; 22(1):37-40. PubMed ID: 3963739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Pancreatic lithostathine inhibitor of calcium carbonate precipitation: structure-function relationship].
    Bernard JP; Takacs T; de Reggi M; Sarles H; Dagorn JC
    Nephrologie; 1993; 14(6):257-9. PubMed ID: 8145882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium dialysis measurements of the Ca2+-binding properties of recombinant radish vacuolar Ca2+-binding protein expressed in Escherichia coli.
    Yuasa K; Maeshima M
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2382-7. PubMed ID: 12506976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4.
    Dai H; Shin OH; Machius M; Tomchick DR; Südhof TC; Rizo J
    Nat Struct Mol Biol; 2004 Sep; 11(9):844-9. PubMed ID: 15311271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The W105G and W99G sorcin mutants demonstrate the role of the D helix in the Ca(2+)-dependent interaction with annexin VII and the cardiac ryanodine receptor.
    Colotti G; Zamparelli C; Verzili D; Mella M; Loughrey CM; Smith GL; Chiancone E
    Biochemistry; 2006 Oct; 45(41):12519-29. PubMed ID: 17029407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of calcium-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin with vanadyl ions: electron paramagnetic resonance and electron nuclear double resonance spectroscopy.
    Mustafi D; Nakagawa Y
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11323-7. PubMed ID: 7972057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial expression and characterization of a novel, soluble, calcium-binding, and calcium-activated human nucleotidase.
    Murphy DM; Ivanenkov VV; Kirley TL
    Biochemistry; 2003 Mar; 42(8):2412-21. PubMed ID: 12600208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and calcium-binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp.
    Hauk P; Guzzo CR; Roman Ramos H; Ho PL; Farah CS
    J Mol Biol; 2009 Jul; 390(4):722-36. PubMed ID: 19477185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pancreatic stone protein (lithostathine), a physiologically relevant pancreatic calcium carbonate crystal inhibitor?
    Bimmler D; Graf R; Scheele GA; Frick TW
    J Biol Chem; 1997 Jan; 272(5):3073-82. PubMed ID: 9006958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of ALG-2. A novel apoptosis-linked Ca(2+)-binding protein.
    Zhang M; Lo KW
    Methods Mol Biol; 2002; 172():235-42. PubMed ID: 11833351
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of Zn(2+), Ca(2+), and Mg(2+) on the structure of Zn(7)metallothionein-3: evidence for an additional zinc binding site.
    Meloni G; Polanski T; Braun O; Vasák M
    Biochemistry; 2009 Jun; 48(24):5700-7. PubMed ID: 19425569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAP I interacts with itself, PAP II, PAP III, and lithostathine/regIalpha.
    Bödeker H; Keim V; Fiedler F; Dagorn JC; Iovanna JL
    Mol Cell Biol Res Commun; 1999; 2(3):150-4. PubMed ID: 10662590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axial ligand coordination in sterically strained vanadyl porphyrins: synthesis, structure, and properties.
    Ghosh SK; Patra R; Rath SP
    Inorg Chem; 2008 Nov; 47(21):9848-56. PubMed ID: 18823111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium regulation of inositol 1,4,5-trisphosphate receptors.
    Joseph SK; Brownell S; Khan MT
    Cell Calcium; 2005 Dec; 38(6):539-46. PubMed ID: 16198415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the redox and metal binding activity of BsSco, a protein implicated in the assembly of cytochrome c oxidase.
    Imriskova-Sosova I; Andrews D; Yam K; Davidson D; Yachnin B; Hill BC
    Biochemistry; 2005 Dec; 44(51):16949-56. PubMed ID: 16363808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.