BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12589693)

  • 1. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.
    Bronsert M; Bingol H; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):72-85. PubMed ID: 12589693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): intracellular evaluation.
    Navia B; Stout J; Atkins G
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):63-71. PubMed ID: 12589692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective processing of calling songs by auditory interneurons in the female cricket, Gryllus pennsylvanicus: possible roles in behavior.
    Jeffery J; Navia B; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2005 May; 303(5):377-92. PubMed ID: 15828009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.
    Nolen TG; Hoy RR
    J Neurosci; 1987 Jul; 7(7):2081-96. PubMed ID: 3612230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attractiveness of the male Acheta domesticus calling song to females. III. The relation of age-correlated changes in syllable period recognition and phonotactic threshold to juvenile hormone III biosynthesis.
    Walikonis R; Schoun D; Zacharias D; Henley J; Coburn P; Stout J
    J Comp Physiol A; 1991 Dec; 169(6):751-64. PubMed ID: 1795239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier-dependent temporal processing in an auditory interneuron.
    Sabourin P; Gottlieb H; Pollack GS
    J Acoust Soc Am; 2008 May; 123(5):2910-7. PubMed ID: 18529207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An auditory-responsive interneuron descending from the cricket brain: a new element in the auditory pathway.
    Rogers SM; Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):571-589. PubMed ID: 36208310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and reliable decisions for a dynamic song parameter in field crickets.
    Trobe D; Schuster R; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):131-5. PubMed ID: 20878165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets.
    Nebeling B
    J Exp Zool; 2000 Feb; 286(3):219-30. PubMed ID: 10653961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cricket phonotaxis through hormonal control of the threshold of an identified auditory neuron.
    Stout J; Atkins G; Zacharias D
    J Comp Physiol A; 1991 Dec; 169(6):765-72. PubMed ID: 1795240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.
    Zorović M; Hedwig B
    J Neurophysiol; 2011 May; 105(5):2181-94. PubMed ID: 21346206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.