These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12589718)

  • 1. Graphic-based musculoskeletal model for biomechanical analyses and animation.
    Chao EY
    Med Eng Phys; 2003 Apr; 25(3):201-12. PubMed ID: 12589718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual Interactive Musculoskeletal System (VIMS) in orthopaedic research, education and clinical patient care.
    Chao EY; Armiger RS; Yoshida H; Lim J; Haraguchi N
    J Orthop Surg Res; 2007 Mar; 2():2. PubMed ID: 17343764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activity.
    Lin HT; Nakamura Y; Su FC; Hashimoto J; Nobuhara K; Chao EY
    J Biomech Eng; 2005 Jun; 127(3):525-30. PubMed ID: 16060359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OpenSim: open-source software to create and analyze dynamic simulations of movement.
    Delp SL; Anderson FC; Arnold AS; Loan P; Habib A; John CT; Guendelman E; Thelen DG
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1940-50. PubMed ID: 18018689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A graphics-based software system to develop and analyze models of musculoskeletal structures.
    Delp SL; Loan JP
    Comput Biol Med; 1995 Jan; 25(1):21-34. PubMed ID: 7600758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].
    Wei G; Tang G; Fu Z; Sun Q; Tian F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1039-43. PubMed ID: 21089666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and animation of musculoskeletal joint system.
    Chao EY; Lynch JD; Vanderploeg MJ
    J Biomech Eng; 1993 Nov; 115(4B):562-8. PubMed ID: 8302042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time animation software for customized training to use motor prosthetic systems.
    Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):134-42. PubMed ID: 22186964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data representation for joint kinematics simulation of the lower limb within an educational context.
    Van Sint Jan S; Hilal I; Salvia P; Sholukha V; Poulet P; Kirokoya I; Rooze M
    Med Eng Phys; 2003 Apr; 25(3):213-20. PubMed ID: 12589719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced modeling environment for developing and testing FES control systems.
    Davoodi R; Brown IE; Loeb GE
    Med Eng Phys; 2003 Jan; 25(1):3-9. PubMed ID: 12485781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.
    Suzuki N; Hattori A; Hashizume M
    Stud Health Technol Inform; 2016; 220():396-402. PubMed ID: 27046612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
    Ahn HS; DiAngelo DJ
    Spine (Phila Pa 1976); 2007 May; 32(11):E330-6. PubMed ID: 17495766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling avian kinematics using software developed for the human musculoskeletal system.
    Buford WL; Hollister AM; Andersen CR
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4301-4. PubMed ID: 18002953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
    Seth A; Hicks JL; Uchida TK; Habib A; Dembia CL; Dunne JJ; Ong CF; DeMers MS; Rajagopal A; Millard M; Hamner SR; Arnold EM; Yong JR; Lakshmikanth SK; Sherman MA; Ku JP; Delp SL
    PLoS Comput Biol; 2018 Jul; 14(7):e1006223. PubMed ID: 30048444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VU-flow: a visualization tool for analyzing navigation in virtual environments.
    Chittaro L; Ranon R; Ieronutti L
    IEEE Trans Vis Comput Graph; 2006; 12(6):1475-85. PubMed ID: 17073370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems.
    Hedrick TL
    Bioinspir Biomim; 2008 Sep; 3(3):034001. PubMed ID: 18591738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.
    Song D; Lan N; Loeb GE; Gordon J
    Ann Biomed Eng; 2008 Jun; 36(6):1033-48. PubMed ID: 18299994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seeing people in different light--joint shape, motion, and reflectance capture.
    Theobalt C; Ahmed N; Lensch H; Magnor M; Seidel HP
    IEEE Trans Vis Comput Graph; 2007; 13(4):663-74. PubMed ID: 17495327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musculoskeletal modeling and simulation of three various Sit-to-Stand strategies: An evaluation of the biomechanical effects of the chair-rise strategy modification.
    Bajelan S; Azghani MR
    Technol Health Care; 2014; 22(4):627-44. PubMed ID: 24990172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.