These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12589719)

  • 1. Data representation for joint kinematics simulation of the lower limb within an educational context.
    Van Sint Jan S; Hilal I; Salvia P; Sholukha V; Poulet P; Kirokoya I; Rooze M
    Med Eng Phys; 2003 Apr; 25(3):213-20. PubMed ID: 12589719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling.
    Van Sint Jan S; Salvia P; Hilal I; Sholukha V; Rooze M; Clapworthy G
    J Biomech; 2002 Nov; 35(11):1475-84. PubMed ID: 12413966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint kinematics simulation from medical imaging data.
    Van Sint Jan S; Giurintano DJ; Thompson DE; Rooze M
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1175-84. PubMed ID: 9401218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphic-based musculoskeletal model for biomechanical analyses and animation.
    Chao EY
    Med Eng Phys; 2003 Apr; 25(3):201-12. PubMed ID: 12589718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
    Ahn HS; DiAngelo DJ
    Spine (Phila Pa 1976); 2007 May; 32(11):E330-6. PubMed ID: 17495766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.
    Oishi M; Fukuda M; Hiraishi T; Yajima N; Sato Y; Fujii Y
    J Neurosurg; 2012 Sep; 117(3):555-65. PubMed ID: 22746377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chain kinematic model to assess the movement of lower-limb including wobbling masses.
    Thouzé A; Monnet T; Bélaise C; Lacouture P; Begon M
    Comput Methods Biomech Biomed Engin; 2016; 19(7):707-16. PubMed ID: 26214052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional temporomandibular joint modeling and animation.
    Cascone P; Rinaldi F; Pagnoni M; Marianetti TM; Tedaldi M
    J Craniofac Surg; 2008 Nov; 19(6):1526-31. PubMed ID: 19098544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures.
    Delp SL; Loan JP; Hoy MG; Zajac FE; Topp EL; Rosen JM
    IEEE Trans Biomed Eng; 1990 Aug; 37(8):757-67. PubMed ID: 2210784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data.
    Fischer KJ; Manson TT; Pfaeffle HJ; Tomaino MM; Woo SL
    J Biomech; 2001 Mar; 34(3):377-83. PubMed ID: 11182130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical views on simulation and navigation technologies in kinematics of joints in locomotor surgery].
    Hadziahmetović Z; Vavra-Hadziahmetović N
    Med Arh; 2004; 58(1 Suppl 2):100-2. PubMed ID: 15137217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantom-based multimodal interactions for medical education and training: the Munich Knee Joint Simulator.
    Riener R; Frey M; Pröll T; Regenfelder F; Burgkart R
    IEEE Trans Inf Technol Biomed; 2004 Jun; 8(2):208-16. PubMed ID: 15217266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer system for definition of the quantitative geometry of musculature from CT images.
    Daniel M; Iglic A; Kralj-Iglic V; Konvicková S
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):25-9. PubMed ID: 16154867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].
    Wei G; Tang G; Fu Z; Sun Q; Tian F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1039-43. PubMed ID: 21089666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeing people in different light--joint shape, motion, and reflectance capture.
    Theobalt C; Ahmed N; Lensch H; Magnor M; Seidel HP
    IEEE Trans Vis Comput Graph; 2007; 13(4):663-74. PubMed ID: 17495327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arthrodial joint markerless cross-parameterization and biomechanical visualization.
    Marai GE; Grimm CM; Laidlaw DH
    IEEE Trans Vis Comput Graph; 2007; 13(5):1095-104. PubMed ID: 17622690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for representation and visualization of 3D shape variability of organs in an interactive anatomical atlas.
    Handels H; Hacker S
    Methods Inf Med; 2009; 48(3):272-81. PubMed ID: 19387505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.