These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12589724)

  • 21. Spiculous skeleton formation in the freshwater sponge
    Bart MC; de Vet SJ; de Bakker DM; Alexander BE; van Oevelen D; van Loon EE; van Loon JJWA; de Goeij JM
    PeerJ; 2019; 6():e6055. PubMed ID: 30631642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feeding in a calcareous sponge: particle uptake by pseudopodia.
    Leys SP; Eerkes-Medrano DI
    Biol Bull; 2006 Oct; 211(2):157-71. PubMed ID: 17062875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Experimental-morphological study of morphogenetic potencies of homogeneous aggregates of different types of cells from the freshwater sponge Ephydatia fluviatilis (L.)].
    Nikitin NS
    Ontogenez; 1977; 8(5):460-7. PubMed ID: 909680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies.
    Kaluzhnaya OV; Belikov SI; Schröder HC; Rothenberger M; Zapf S; Kaandorp JA; Borejko A; Müller IM; Müller WE
    Naturwissenschaften; 2005 Mar; 92(3):128-33. PubMed ID: 15655662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Phylogenetic position of sponges from Chagytaĭ and Tore-Khol' lakes].
    Maĭkova OO; Itskovich VB; Semiturkina NA; Kaliuzhnaia OV; Belikov SI
    Genetika; 2010 Dec; 46(12):1670-7. PubMed ID: 21434420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Planctopirus ephydatiae, a novel Planctomycete isolated from a freshwater sponge.
    Kohn T; Wiegand S; Boedeker C; Rast P; Heuer A; Jetten MSM; Schüler M; Becker S; Rohde C; Müller RW; Brümmer F; Rohde M; Engelhardt H; Jogler M; Jogler C
    Syst Appl Microbiol; 2020 Jan; 43(1):126022. PubMed ID: 31785948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Hybridization to Identify Stem Cells in the Freshwater Sponge Ephydatia fluviatilis.
    Kojima C; Funayama N
    Methods Mol Biol; 2022; 2450():335-346. PubMed ID: 35359316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge.
    Elliott GR; Leys SP
    J Exp Biol; 2007 Nov; 210(Pt 21):3736-48. PubMed ID: 17951414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of spiculogenesis in demosponge and hexactinellid larvae.
    Leys SP
    Microsc Res Tech; 2003 Nov; 62(4):300-11. PubMed ID: 14534904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three new species of
    Laudee P; Seetapan K; Malicky H
    Zootaxa; 2017 Dec; 4362(2):294-300. PubMed ID: 29245432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comments on a skeleton design paradigm for a demosponge.
    Aluma Y; Ilan M; Sherman D
    J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodiversity of freshwater sponges (Porifera: Spongillina) from northeast Brazil: new species and notes on systematics.
    Nicacio G; Pinheiro U
    Zootaxa; 2015 Jul; 3981(2):220-40. PubMed ID: 26249990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.
    Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC
    J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a molecular systematics of the Lake Baikal/Lake Tuva sponges.
    Wiens M; Wrede P; Grebenjuk VA; Kaluzhnaya OV; Belikov SI; Schröder HC; Müller WE
    Prog Mol Subcell Biol; 2009; 47():111-44. PubMed ID: 19198775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histochemical studies on glycogen in the cells of the fresh water sponge Ephydatia fluviatilis.
    LUTFY RG
    Cellule; 1960; 61():143-9. PubMed ID: 13764457
    [No Abstract]   [Full Text] [Related]  

  • 37. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules.
    Wang X; Schloßmacher U; Wiens M; Batel R; Schröder HC; Müller WE
    FEBS J; 2012 May; 279(10):1721-36. PubMed ID: 22340505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine structures of sponge cell membranes: comparative study with freeze-fracture and conventional thin section methods.
    Lethias C; Garrone R; Mazzorana M
    Tissue Cell; 1983; 15(4):523-35. PubMed ID: 6636118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of germanium (Ge) with biosilicification in the freshwater sponge Ephydatia mülleri: evidence of localized membrane domains in the silicalemma.
    Simpson TL; Garrone R; Mazzorana M
    J Ultrastruct Res; 1983 Nov; 85(2):159-74. PubMed ID: 6325724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi.
    Müller WE; Wendt K; Geppert C; Wiens M; Reiber A; Schröder HC
    Biosens Bioelectron; 2006 Jan; 21(7):1149-55. PubMed ID: 15935634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.