These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1084 related articles for article (PubMed ID: 12590539)
1. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant. Jensen MP; Lange SJ; Mehn MP; Que EL; Que L J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539 [TBL] [Abstract][Full Text] [Related]
2. Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. Kunishita A; Doi Y; Kubo M; Ogura T; Sugimoto H; Itoh S Inorg Chem; 2009 Jun; 48(11):4997-5004. PubMed ID: 19374371 [TBL] [Abstract][Full Text] [Related]
3. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate. Mehn MP; Fujisawa K; Hegg EL; Que L J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001 [TBL] [Abstract][Full Text] [Related]
4. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419 [TBL] [Abstract][Full Text] [Related]
5. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
6. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169 [TBL] [Abstract][Full Text] [Related]
7. Iron-promoted ortho- and/or ipso-hydroxylation of benzoic acids with H(2)O(2). Makhlynets OV; Das P; Taktak S; Flook M; Mas-Ballesté R; Rybak-Akimova EV; Que L Chemistry; 2009 Dec; 15(47):13171-80. PubMed ID: 19876966 [TBL] [Abstract][Full Text] [Related]
8. Binuclear manganese compounds of potential biological significance. Part 2. Mechanistic study of hydrogen peroxide disproportionation by dimanganese complexes: the two oxygen atoms of the peroxide end up in a dioxo intermediate. Dubois L; Caspar R; Jacquamet L; Petit PE; Charlot MF; Baffert C; Collomb MN; Deronzier A; Latour JM Inorg Chem; 2003 Aug; 42(16):4817-27. PubMed ID: 12895103 [TBL] [Abstract][Full Text] [Related]
9. Catalytic C-H bond amination from high-spin iron imido complexes. King ER; Hennessy ET; Betley TA J Am Chem Soc; 2011 Apr; 133(13):4917-23. PubMed ID: 21405138 [TBL] [Abstract][Full Text] [Related]
10. EPR, 1H and 2H NMR, and reactivity studies of the iron-oxygen intermediates in bioinspired catalyst systems. Lyakin OY; Bryliakov KP; Talsi EP Inorg Chem; 2011 Jun; 50(12):5526-38. PubMed ID: 21598909 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic hydrocarbon oxidation catalyzed by nonheme iron(III) complexes with peracids: evidence for an Fe(V)=O species. Lee SH; Han JH; Kwak H; Lee SJ; Lee EY; Kim HJ; Lee JH; Bae C; Lee SN; Kim Y; Kim C Chemistry; 2007; 13(33):9393-8. PubMed ID: 17685379 [TBL] [Abstract][Full Text] [Related]
12. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes. Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases. Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and oxidation of carboxylate-bridged diiron(II) complexes with substrates tethered to primary alkyl amine ligands. Carson EC; Lippard SJ J Inorg Biochem; 2006 May; 100(5-6):1109-17. PubMed ID: 16439023 [TBL] [Abstract][Full Text] [Related]
16. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M; Mayilmurugan R; Palaniandavar M Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874 [TBL] [Abstract][Full Text] [Related]
17. Intramolecular energy transfer involving heisenberg spin-coupled dinuclear iron-oxo complexes. Picraux LB; Smeigh AL; Guo D; McCusker JK Inorg Chem; 2005 Oct; 44(22):7846-59. PubMed ID: 16241134 [TBL] [Abstract][Full Text] [Related]
18. Monomeric MnIII/II and FeIII/II complexes with terminal hydroxo and oxo ligands: probing reactivity via O-H bond dissociation energies. Gupta R; Borovik AS J Am Chem Soc; 2003 Oct; 125(43):13234-42. PubMed ID: 14570499 [TBL] [Abstract][Full Text] [Related]
19. Aromatic hydroxylation at a non-heme iron center: observed intermediates and insights into the nature of the active species. Makhlynets OV; Rybak-Akimova EV Chemistry; 2010 Dec; 16(47):13995-4006. PubMed ID: 21117047 [TBL] [Abstract][Full Text] [Related]
20. One-step and two-step spin-crossover iron(II) complexes of ((2-methylimidazol-4-yl)methylidene)histamine. Sato T; Nishi K; Iijima S; Kojima M; Matsumoto N Inorg Chem; 2009 Aug; 48(15):7211-29. PubMed ID: 19722691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]