These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 12590547)
1. Zeolite-confined Nano-RuO(2): A green, selective, and efficient catalyst for aerobic alcohol oxidation. Zhan BZ; White MA; Sham TK; Pincock JA; Doucet RJ; Rao KV; Robertson KN; Cameron TS J Am Chem Soc; 2003 Feb; 125(8):2195-9. PubMed ID: 12590547 [TBL] [Abstract][Full Text] [Related]
2. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate. Li W; Liu H; Iglesia E J Phys Chem B; 2006 Nov; 110(46):23337-42. PubMed ID: 17107184 [TBL] [Abstract][Full Text] [Related]
3. Osmium(0) nanoclusters stabilized by zeolite framework; highly active catalyst in the aerobic oxidation of alcohols under mild conditions. Zahmakiran M; Akbayrak S; Kodaira T; Ozkar S Dalton Trans; 2010 Aug; 39(32):7521-7. PubMed ID: 20614055 [TBL] [Abstract][Full Text] [Related]
4. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Wang X; Liu R; Jin Y; Liang X Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352 [TBL] [Abstract][Full Text] [Related]
5. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying. Wei YC; Liu CW; Wang KW Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843 [TBL] [Abstract][Full Text] [Related]
6. Rules for selectivity in oxidation processes on RuO2(110). López N; Novell-Leruth G Phys Chem Chem Phys; 2010 Oct; 12(38):12217-22. PubMed ID: 20717585 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. Mori K; Hara T; Mizugaki T; Ebitani K; Kaneda K J Am Chem Soc; 2004 Sep; 126(34):10657-66. PubMed ID: 15327324 [TBL] [Abstract][Full Text] [Related]
8. Ru(0001) model catalyst under oxidizing and reducing reaction conditions: in-situ high-pressure surface X-ray diffraction study. He YB; Knapp M; Lundgren E; Over H J Phys Chem B; 2005 Nov; 109(46):21825-30. PubMed ID: 16853834 [TBL] [Abstract][Full Text] [Related]
9. Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways. Blume R; Hävecker M; Zafeiratos S; Teschner D; Vass E; Schnörch P; Knop-Gericke A; Schlögl R; Lizzit S; Dudin P; Barinov A; Kiskinova M Phys Chem Chem Phys; 2007 Jul; 9(27):3648-57. PubMed ID: 17612729 [TBL] [Abstract][Full Text] [Related]
10. Chemically modified electrode with a film of nano ruthenium oxides stabilizing high valent RuO(4)(-) species and its redox-selective sequential transformation to polynuclear ruthenium oxide-metallocyanates. Kumar AS; Tanase T; Zen JM Langmuir; 2009 Dec; 25(23):13633-40. PubMed ID: 19928948 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous wheel-shaped Cu20-polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- catalyst for solvent-free aerobic oxidation of n-hexadecane. Chen L; Hu J; Mal SS; Kortz U; Jaensch H; Mathys G; Richards RM Chemistry; 2009 Jul; 15(30):7490-7. PubMed ID: 19551774 [TBL] [Abstract][Full Text] [Related]
12. The role of weakly bound on-top oxygen in the catalytic CO oxidation reaction over RuO2(110). Wendt S; Knapp M; Over H J Am Chem Soc; 2004 Feb; 126(5):1537-41. PubMed ID: 14759212 [TBL] [Abstract][Full Text] [Related]
13. Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols. Iwasawa T; Tokunaga M; Obora Y; Tsuji Y J Am Chem Soc; 2004 Jun; 126(21):6554-5. PubMed ID: 15161274 [TBL] [Abstract][Full Text] [Related]
14. Nature and role of surface carbonates and bicarbonates in CO oxidation over RuO(2). Wang H; Schneider WF Phys Chem Chem Phys; 2010 Jun; 12(24):6367-74. PubMed ID: 20428581 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of ruthenium in organic-inorganic hybrid copolymers: a reusable heterogeneous catalyst for oxidation of alcohols with molecular oxygen. Matsumoto T; Ueno M; Wang N; Kobayashi S Chem Asian J; 2008 Feb; 3(2):239-43. PubMed ID: 18188860 [TBL] [Abstract][Full Text] [Related]
16. Promotion of the electrochemical activity of a bimetallic platinum-ruthenium catalyst by oxidation-induced segregation. Huang SY; Chang SM; Lin CL; Chen CH; Yeh CT J Phys Chem B; 2006 Nov; 110(46):23300-5. PubMed ID: 17107179 [TBL] [Abstract][Full Text] [Related]
17. Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga(1-x)Zn(x))(N(1-x)Ox) for photocatalytic overall water splitting. Teramura K; Maeda K; Saito T; Takata T; Saito N; Inoue Y; Domen K J Phys Chem B; 2005 Nov; 109(46):21915-21. PubMed ID: 16853847 [TBL] [Abstract][Full Text] [Related]
18. Selective catalytic reduction of NO by NH3 on Cu-faujasite catalysts: an experimental and quantum chemical approach. Delahay G; Villagomez EA; Ducere JM; Berthomieu D; Goursot A; Coq B Chemphyschem; 2002 Aug; 3(8):686-92. PubMed ID: 12503149 [TBL] [Abstract][Full Text] [Related]
19. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. Bare SR; Kelly SD; Sinkler W; Low JJ; Modica FS; Valencia S; Corma A; Nemeth LT J Am Chem Soc; 2005 Sep; 127(37):12924-32. PubMed ID: 16159286 [TBL] [Abstract][Full Text] [Related]
20. Bound site of Mo atoms and its local structure in a Mo/HY catalyst characterized by extended X-ray absorption fine structure and density functional calculation. Sasaki T; Nakagawa F; Iwasawa Y J Phys Chem B; 2005 Feb; 109(6):2128-38. PubMed ID: 16851204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]