These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12590581)
1. A dynamic structure for the acyl-enzyme species of the antibiotic aztreonam with the Citrobacter freundii beta-lactamase revealed by infrared spectroscopy and molecular dynamics simulations. Wilkinson AS; Bryant PK; Meroueh SO; Page MG; Mobashery S; Wharton CW Biochemistry; 2003 Feb; 42(7):1950-7. PubMed ID: 12590581 [TBL] [Abstract][Full Text] [Related]
2. Multiple conformations of the acylenzyme formed in the hydrolysis of methicillin by Citrobacter freundii beta-lactamase: a time-resolved FTIR spectroscopic study. Wilkinson AS; Ward S; Kania M; Page MG; Wharton CW Biochemistry; 1999 Mar; 38(13):3851-6. PubMed ID: 10194295 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation. Díaz N; Suárez D; Sordo TL Biochemistry; 2006 Jan; 45(2):439-51. PubMed ID: 16401074 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen bonding and protein perturbation in beta-lactam acyl-enzymes of Streptococcus pneumoniae penicillin-binding protein PBP2x. Chittock RS; Ward S; Wilkinson AS; Caspers P; Mensch B; Page MG; Wharton CW Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):153-9. PubMed ID: 9931311 [TBL] [Abstract][Full Text] [Related]
5. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Oefner C; D'Arcy A; Daly JJ; Gubernator K; Charnas RL; Heinze I; Hubschwerlen C; Winkler FK Nature; 1990 Jan; 343(6255):284-8. PubMed ID: 2300174 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201 [TBL] [Abstract][Full Text] [Related]
7. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Sun T; Bethel CR; Bonomo RA; Knox JR Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C β-lactamases with β-lactam antibiotics. Tripathi R; Nair NN J Am Chem Soc; 2013 Oct; 135(39):14679-90. PubMed ID: 24010547 [TBL] [Abstract][Full Text] [Related]
9. Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. Heinze-Krauss I; Angehrn P; Charnas RL; Gubernator K; Gutknecht EM; Hubschwerlen C; Kania M; Oefner C; Page MG; Sogabe S; Specklin JL; Winkler F J Med Chem; 1998 Oct; 41(21):3961-71. PubMed ID: 9767633 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases. Maveyraud L; Pratt RF; Samama JP Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487 [TBL] [Abstract][Full Text] [Related]
12. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases. Delmas J; Chen Y; Prati F; Robin F; Shoichet BK; Bonnet R J Mol Biol; 2008 Jan; 375(1):192-201. PubMed ID: 17999931 [TBL] [Abstract][Full Text] [Related]
13. Toward better antibiotics: crystallographic studies of a novel class of DD-peptidase/beta-lactamase inhibitors. Silvaggi NR; Kaur K; Adediran SA; Pratt RF; Kelly JA Biochemistry; 2004 Jun; 43(22):7046-53. PubMed ID: 15170342 [TBL] [Abstract][Full Text] [Related]
14. Modeling study on a hydrolytic mechanism of class A beta-lactamases. Ishiguro M; Imajo S J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
16. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling. Bernstein NJ; Pratt RF Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146 [TBL] [Abstract][Full Text] [Related]
17. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997 [TBL] [Abstract][Full Text] [Related]
18. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step. Massova I; Kollman PA J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425 [TBL] [Abstract][Full Text] [Related]
19. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Strynadka NC; Adachi H; Jensen SE; Johns K; Sielecki A; Betzel C; Sutoh K; James MN Nature; 1992 Oct; 359(6397):700-5. PubMed ID: 1436034 [TBL] [Abstract][Full Text] [Related]
20. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]