These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12590581)
21. Inhibition of class A and class C beta-lactamases by penems: crystallographic structures of a novel 1,4-thiazepine intermediate. Nukaga M; Abe T; Venkatesan AM; Mansour TS; Bonomo RA; Knox JR Biochemistry; 2003 Nov; 42(45):13152-9. PubMed ID: 14609325 [TBL] [Abstract][Full Text] [Related]
22. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates. Nagarajan R; Pratt RF Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621 [TBL] [Abstract][Full Text] [Related]
23. A theoretical study on the substrate deacylation mechanism of class C beta-lactamase. Hata M; Tanaka Y; Fujii Y; Neya S; Hoshino T J Phys Chem B; 2005 Aug; 109(33):16153-60. PubMed ID: 16853052 [TBL] [Abstract][Full Text] [Related]
24. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis. Chen CC; Rahil J; Pratt RF; Herzberg O J Mol Biol; 1993 Nov; 234(1):165-78. PubMed ID: 8230196 [TBL] [Abstract][Full Text] [Related]
25. Kinetic and structural consequences of the leaving group in substrates of a class C beta-lactamase. Ahn YM; Pratt RF Bioorg Med Chem; 2004 Mar; 12(6):1537-42. PubMed ID: 15018927 [TBL] [Abstract][Full Text] [Related]
26. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences. White AJ; Wharton CW Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898 [TBL] [Abstract][Full Text] [Related]
27. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins. Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485 [TBL] [Abstract][Full Text] [Related]
28. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. Meroueh SO; Minasov G; Lee W; Shoichet BK; Mobashery S J Am Chem Soc; 2003 Aug; 125(32):9612-8. PubMed ID: 12904027 [TBL] [Abstract][Full Text] [Related]
29. Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases. Richter HG; Angehrn P; Hubschwerlen C; Kania M; Page MG; Specklin JL; Winkler FK J Med Chem; 1996 Sep; 39(19):3712-22. PubMed ID: 8809160 [TBL] [Abstract][Full Text] [Related]
30. Molecular dynamics simulations of the TEM-1 beta-lactamase complexed with cephalothin. Díaz N; Suárez D; Merz KM; Sordo TL J Med Chem; 2005 Feb; 48(3):780-91. PubMed ID: 15689162 [TBL] [Abstract][Full Text] [Related]
31. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases. Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108 [TBL] [Abstract][Full Text] [Related]
32. Trapping of an acyl-enzyme intermediate in a penicillin-binding protein (PBP)-catalyzed reaction. Macheboeuf P; Lemaire D; Teller N; Martins Ados S; Luxen A; Dideberg O; Jamin M; Dessen A J Mol Biol; 2008 Feb; 376(2):405-13. PubMed ID: 18155726 [TBL] [Abstract][Full Text] [Related]
33. 4-Substituted trinems as broad spectrum beta-lactamase inhibitors: structure-based design, synthesis, and biological activity. Plantan I; Selic L; Mesar T; Anderluh PS; Oblak M; Prezelj A; Hesse L; Andrejasic M; Vilar M; Turk D; Kocijan A; Prevec T; Vilfan G; Kocjan D; Copar A; Urleb U; Solmajer T J Med Chem; 2007 Aug; 50(17):4113-21. PubMed ID: 17665896 [TBL] [Abstract][Full Text] [Related]
34. Antibiotic binding to dizinc beta-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies. Xu D; Guo H; Cui Q J Phys Chem A; 2007 Jul; 111(26):5630-6. PubMed ID: 17388313 [TBL] [Abstract][Full Text] [Related]
35. Role of beta-lactam carboxyl group on binding of penicillins and cephalosporins to class C beta-lactamases. Fenollar-Ferrer C; Frau J; Donoso J; Muñoz F Proteins; 2003 May; 51(3):442-52. PubMed ID: 12696055 [TBL] [Abstract][Full Text] [Related]
36. Irreversible inhibition of metallo-beta-lactamase (IMP-1) by 3-(3-mercaptopropionylsulfanyl)propionic acid pentafluorophenyl ester. Kurosaki H; Yamaguchi Y; Higashi T; Soga K; Matsueda S; Yumoto H; Misumi S; Yamagata Y; Arakawa Y; Goto M Angew Chem Int Ed Engl; 2005 Jun; 44(25):3861-4. PubMed ID: 15892033 [No Abstract] [Full Text] [Related]
37. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis. Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800 [TBL] [Abstract][Full Text] [Related]
39. A crystallographic re-investigation into the structure of Streptomyces griseus proteinase A reveals an acyl-enzyme intermediate. Blanchard H; James MN J Mol Biol; 1994 Aug; 241(4):574-87. PubMed ID: 8057380 [TBL] [Abstract][Full Text] [Related]
40. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Oliva M; Dideberg O; Field MJ Proteins; 2003 Oct; 53(1):88-100. PubMed ID: 12945052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]