BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 12590607)

  • 21. Proton-mediated dynamics of the alkaline conformational transition of yeast iso-1-cytochrome c.
    Martinez RE; Bowler BE
    J Am Chem Soc; 2004 Jun; 126(21):6751-8. PubMed ID: 15161303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering.
    Kamatari YO; Konno T; Kataoka M; Akasaka K
    J Mol Biol; 1996 Jun; 259(3):512-23. PubMed ID: 8676385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding.
    Baddam S; Bowler BE
    Biochemistry; 2006 Apr; 45(14):4611-9. PubMed ID: 16584196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The magnitude of changes in guanidine-HCl unfolding m-values in the protein, iso-1-cytochrome c, depends upon the substructure containing the mutation.
    Hammack B; Attfield K; Clayton D; Dec E; Dong A; Sarisky C; Bowler BE
    Protein Sci; 1998 Aug; 7(8):1789-95. PubMed ID: 10082376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands.
    Elöve GA; Bhuyan AK; Roder H
    Biochemistry; 1994 Jun; 33(22):6925-35. PubMed ID: 8204626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c.
    Battistuzzi G; Borsari M; De Rienzo F; Di Rocco G; Ranieri A; Sola M
    Biochemistry; 2007 Feb; 46(6):1694-702. PubMed ID: 17243773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation of trimethyllysine 72 to alanine enhances His79-heme-mediated dynamics of iso-1-cytochrome c.
    Cherney MM; Junior CC; Bowler BE
    Biochemistry; 2013 Feb; 52(5):837-46. PubMed ID: 23311346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism.
    Tsaprailis G; Chan DW; English AM
    Biochemistry; 1998 Feb; 37(7):2004-16. PubMed ID: 9485327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the dynamics of a His73-heme alkaline transition in a destabilized variant of yeast iso-1-cytochrome c with conformationally gated electron transfer methods.
    Bandi S; Bowler BE
    Biochemistry; 2011 Nov; 50(46):10027-40. PubMed ID: 22026475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the rate and pH accessibility of a conformational electron transfer gate.
    Baddam S; Bowler BE
    Inorg Chem; 2006 Aug; 45(16):6338-46. PubMed ID: 16878944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the predominant non-native histidine ligand in unfolded cytochrome c.
    Colón W; Wakem LP; Sherman F; Roder H
    Biochemistry; 1997 Oct; 36(41):12535-41. PubMed ID: 9376358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Native tertiary structure in an A-state.
    Marmorino JL; Lehti M; Pielak GJ
    J Mol Biol; 1998 Jan; 275(2):379-88. PubMed ID: 9466916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of the stability of Hydrogenobacter thermophilus cytochrome C(552) through alteration of the basicity of the N-terminal amino group of the polypeptide chain.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2010 Dec; 49(23):10840-6. PubMed ID: 21058669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2009 Jan; 48(1):331-8. PubMed ID: 19053349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competition between reversible aggregation and loop formation in denatured iso-1-cytochrome c.
    Tzul FO; Kurchan E; Roder H; Bowler BE
    Biochemistry; 2009 Jan; 48(2):481-91. PubMed ID: 19113858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.
    Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD
    J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of replacing the axial methionine ligand with a lysine residue in cytochrome c-550 from Paracoccus versutus assessed by X-ray crystallography and unfolding.
    Worrall JA; van Roon AM; Ubbink M; Canters GW
    FEBS J; 2005 May; 272(10):2441-55. PubMed ID: 15885094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.