BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2946 related articles for article (PubMed ID: 12590610)

  • 21. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding.
    Luisi DL; Raleigh DP
    J Mol Biol; 2000 Jun; 299(4):1091-100. PubMed ID: 10843860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea.
    Pervushin K; Wider G; Iwai H; Wüthrich K
    Biochemistry; 2004 Nov; 43(44):13937-43. PubMed ID: 15518542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of the interaction of the Escherichia coli regulatory protein TyrR with DNA studied by fluorescence spectroscopy.
    Bailey MF; Davidson BE; Haralambidis J; Kwok T; Sawyer WH
    Biochemistry; 1998 May; 37(20):7431-43. PubMed ID: 9585557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus.
    Knapp S; Karshikoff A; Berndt KD; Christova P; Atanasov B; Ladenstein R
    J Mol Biol; 1996 Dec; 264(5):1132-44. PubMed ID: 9000635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energetic basis of molecular recognition in a DNA aptamer.
    Bishop GR; Ren J; Polander BC; Jeanfreau BD; Trent JO; Chaires JB
    Biophys Chem; 2007 Mar; 126(1-3):165-75. PubMed ID: 16914261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme.
    Beadle BM; Baase WA; Wilson DB; Gilkes NR; Shoichet BK
    Biochemistry; 1999 Feb; 38(8):2570-6. PubMed ID: 10029552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of folding and binding in an affibody:affibody complex.
    Dogan J; Lendel C; Härd T
    J Mol Biol; 2006 Jun; 359(5):1305-15. PubMed ID: 16701696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning lambda6-85 towards downhill folding at its melting temperature.
    Liu F; Gruebele M
    J Mol Biol; 2007 Jul; 370(3):574-84. PubMed ID: 17532338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein.
    Ganesh C; Shah AN; Swaminathan CP; Surolia A; Varadarajan R
    Biochemistry; 1997 Apr; 36(16):5020-8. PubMed ID: 9125524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nativelike structure and stability in a truncation mutant of a protein minidomain: the peripheral subunit-binding domain.
    Spector S; Young P; Raleigh DP
    Biochemistry; 1999 Mar; 38(13):4128-36. PubMed ID: 10194328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand binding and thermodynamic stability of a multidomain protein, calmodulin.
    Masino L; Martin SR; Bayley PM
    Protein Sci; 2000 Aug; 9(8):1519-29. PubMed ID: 10975573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic stability of domain 2 of epithelial cadherin.
    Prasad A; Housley NA; Pedigo S
    Biochemistry; 2004 Jun; 43(25):8055-66. PubMed ID: 15209501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus.
    Lundbäck T; Hansson H; Knapp S; Ladenstein R; Härd T
    J Mol Biol; 1998 Mar; 276(4):775-86. PubMed ID: 9500918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 148.