These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12590825)

  • 21. Approximation by fully complex multilayer perceptrons.
    Kim T; Adali T
    Neural Comput; 2003 Jul; 15(7):1641-66. PubMed ID: 12816570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neural network approach to the rapid computation of rotational correlation times from slow motional ESR spectra.
    Martinez GV; Millhauser GL
    J Magn Reson; 1998 Sep; 134(1):124-30. PubMed ID: 9740737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.
    Bizios D; Heijl A; Bengtsson B
    J Glaucoma; 2007 Jan; 16(1):20-8. PubMed ID: 17224745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds.
    Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ; Villanueva-Pareja A
    J Chem Inf Comput Sci; 2004; 44(3):1031-41. PubMed ID: 15154772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applying artificial neural networks to the diagnosis of organic dyspepsia.
    García-Altés A; Santín D; Barenys M
    Stat Methods Med Res; 2007 Aug; 16(4):331-46. PubMed ID: 17715160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ECG signals compression method and its validation using NNs.
    Fira CM; Goras L
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1319-26. PubMed ID: 18390322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
    Huan NJ; Palaniappan R
    J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients.
    Ubeyli ED
    Comput Biol Med; 2008 Mar; 38(3):401-10. PubMed ID: 18275945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system.
    Johnson C; Venayagamoorthy GK; Mitra P
    Neural Netw; 2009; 22(5-6):833-41. PubMed ID: 19616408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning curves for stochastic gradient descent in linear feedforward networks.
    Werfel J; Xie X; Seung HS
    Neural Comput; 2005 Dec; 17(12):2699-718. PubMed ID: 16212768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural networks as a tool for control and management of a biological reactor for treating hydrogen sulphide.
    Elías A; Ibarra-Berastegi G; Arias R; Barona A
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):129-36. PubMed ID: 16770593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial neural networks in analysis of indinavir and its degradation products retention.
    Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M
    Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recoding patterns of sensory input: higher-order features and the function of nonlinear dendritic trees.
    Rhodes PA
    Neural Comput; 2008 Aug; 20(8):2000-36. PubMed ID: 18336083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of wavelet packet transform and artificial neural networks in analysis and classification of dysphonic voices.
    Crovato CD; Schuck A
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1898-900. PubMed ID: 17926690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specification of training sets and the number of hidden neurons for multilayer perceptrons.
    Camargo LS; Yoneyama T
    Neural Comput; 2001 Dec; 13(12):2673-80. PubMed ID: 11705406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular network SOM.
    Tokunaga K; Furukawa T
    Neural Netw; 2009 Jan; 22(1):82-90. PubMed ID: 19103475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computing and analyzing the sensitivity of MLP due to the errors of the i.i.d. inputs and weights based on CLT.
    Yang SS; Ho CL; Siu S
    IEEE Trans Neural Netw; 2010 Dec; 21(12):1882-91. PubMed ID: 20923730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multilayer perceptrons: approximation order and necessary number of hidden units.
    Trenn S
    IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.