BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 12590926)

  • 1. Differential effects of mutations in human endothelial nitric oxide synthase at residues Tyr-357 and Arg-365 on L-arginine hydroxylation and GN-hydroxy-L-arginine oxidation.
    Chen PF; Berka V; Wu KK
    Arch Biochem Biophys; 2003 Mar; 411(1):83-92. PubMed ID: 12590926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Asp-369 and Arg-372 mutations on heme environment and function in human endothelial nitric-oxide synthase.
    Chen PF; Berka V; Tsai AL; Wu KK
    J Biol Chem; 1998 Dec; 273(51):34164-70. PubMed ID: 9852077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
    Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA
    Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions catalyzed by the heme domain of inducible nitric oxide synthase: evidence for the involvement of tetrahydrobiopterin in electron transfer.
    Hurshman AR; Marletta MA
    Biochemistry; 2002 Mar; 41(10):3439-56. PubMed ID: 11876653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
    Rusche KM; Spiering MM; Marletta MA
    Biochemistry; 1998 Nov; 37(44):15503-12. PubMed ID: 9799513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic residues and neighboring Arg414 in the (6R)-5,6,7, 8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH.
    Sagami I; Sato Y; Daff S; Shimizu T
    J Biol Chem; 2000 Aug; 275(34):26150-7. PubMed ID: 10846172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase.
    Wei CC; Wang ZQ; Wang Q; Meade AL; Hemann C; Hille R; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(1):315-9. PubMed ID: 11020389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual role of Tyr588 of neuronal nitric oxide synthase in controlling substrate specificity and electron transfer.
    Sato Y; Sagami I; Matsui T; Shimizu T
    Biochem Biophys Res Commun; 2001 Mar; 281(3):621-6. PubMed ID: 11237702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(ω)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Labby KJ; Chobot SE; Lukoyanov DA; Crane BR; Silverman RB; Hoffman BM
    Biochemistry; 2014 Oct; 53(41):6511-9. PubMed ID: 25251261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three nitric-oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme-dioxy reduction, and arginine hydroxylation.
    Wei CC; Wang ZQ; Durra D; Hemann C; Hille R; Garcin ED; Getzoff ED; Stuehr DJ
    J Biol Chem; 2005 Mar; 280(10):8929-35. PubMed ID: 15632185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase.
    Abu-Soud HM; Ichimori K; Presta A; Stuehr DJ
    J Biol Chem; 2000 Jun; 275(23):17349-57. PubMed ID: 10749853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crucial roles of Asp-314 and Thr-315 in the catalytic activation of molecular oxygen by neuronal nitric-oxide synthase. A site-directed mutagenesis study.
    Sagami I; Shimizu T
    J Biol Chem; 1998 Jan; 273(4):2105-8. PubMed ID: 9442050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature optical absorption spectra suggest a redox role for tetrahydrobiopterin in both steps of nitric oxide synthase catalysis.
    Gorren AC; Bec N; Schrammel A; Werner ER; Lange R; Mayer B
    Biochemistry; 2000 Sep; 39(38):11763-70. PubMed ID: 10995244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.
    Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ
    Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved tryptophan in nitric oxide synthase regulates heme-dioxy reduction by tetrahydrobiopterin.
    Wang ZQ; Wei CC; Ghosh S; Meade AL; Hemann C; Hille R; Stuehr DJ
    Biochemistry; 2001 Oct; 40(43):12819-25. PubMed ID: 11669618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23246-52. PubMed ID: 11313363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
    Moali C; Boucher JL; Sari MA; Stuehr DJ; Mansuy D
    Biochemistry; 1998 Jul; 37(29):10453-60. PubMed ID: 9671515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Aryl N'-hydroxyguanidines, a new class of NO-donors after selective oxidation by nitric oxide synthases: structure-activity relationship.
    Renodon-Cornière A; Dijols S; Perollier C; Lefevre-Groboillot D; Boucher JL; Attias R; Sari MA; Stuehr D; Mansuy D
    J Med Chem; 2002 Feb; 45(4):944-54. PubMed ID: 11831907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.