These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12591250)

  • 1. Light-induced formation of hydroxyl radicals in fog waters determined by an authentic fog constituent, hydroxymethanesulfonate.
    Zuo Y
    Chemosphere; 2003 Apr; 51(3):175-9. PubMed ID: 12591250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters.
    Arakaki T; Anastasio C; Kuroki Y; Nakajima H; Okada K; Kotani Y; Handa D; Azechi S; Kimura T; Tsuhako A; Miyagi Y
    Environ Sci Technol; 2013 Aug; 47(15):8196-203. PubMed ID: 23822860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First evaluation of the effect of microorganisms on steady state hydroxyl radical concentrations in atmospheric waters.
    Lallement A; Vinatier V; Brigante M; Deguillaume L; Delort AM; Mailhot G
    Chemosphere; 2018 Dec; 212():715-722. PubMed ID: 30179836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous-phase photochemical formation of peroxides in authentic cloud and fog waters.
    Faust BC; Anastasio C; Allen JM; Arakaki T
    Science; 1993 Apr; 260(5104):73-5. PubMed ID: 8465202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II.
    Maezono T; Tokumura M; Sekine M; Kawase Y
    Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First Measurements of Organic Triplet Excited States in Atmospheric Waters.
    Kaur R; Anastasio C
    Environ Sci Technol; 2018 May; 52(9):5218-5226. PubMed ID: 29611699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system.
    Nakatani N; Hashimoto N; Shindo H; Yamamoto M; Kikkawa M; Sakugawa H
    Anal Chim Acta; 2007 Jan; 581(2):260-7. PubMed ID: 17386452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples.
    Nakatani N; Ueda M; Shindo H; Takeda K; Sakugawa H
    Anal Sci; 2007 Sep; 23(9):1137-42. PubMed ID: 17878592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terephthalate as a probe for photochemically generated hydroxyl radical.
    Page SE; Arnold WA; McNeill K
    J Environ Monit; 2010 Sep; 12(9):1658-65. PubMed ID: 20694272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.
    Smith JD; Kinney H; Anastasio C
    Phys Chem Chem Phys; 2015 Apr; 17(15):10227-37. PubMed ID: 25797024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical at the air-water interface.
    Roeselová M; Vieceli J; Dang LX; Garrett BC; Tobias DJ
    J Am Chem Soc; 2004 Dec; 126(50):16308-9. PubMed ID: 15600317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.
    Page SE; Logan JR; Cory RM; McNeill K
    Environ Sci Process Impacts; 2014 Apr; 16(4):807-22. PubMed ID: 24556650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid.
    Southworth BA; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1130-6. PubMed ID: 12680665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Photoinduced Generation of Hydroxyl Radical on a Nitrocellulose Membrane Surface and its Application in the Degradation of Organic Pollutants.
    Tai C; Zhang S; Yin Y; Dai Z; Li Y; Jiang G; Cai Y; Huang C; Shi J
    ChemSusChem; 2018 Mar; 11(5):843-847. PubMed ID: 29417754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Implications of Hydroxyl Radicals ((•)OH).
    Gligorovski S; Strekowski R; Barbati S; Vione D
    Chem Rev; 2015 Dec; 115(24):13051-92. PubMed ID: 26630000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark formation of hydroxyl radical in Arctic soil and surface waters.
    Page SE; Kling GW; Sander M; Harrold KH; Logan JR; McNeill K; Cory RM
    Environ Sci Technol; 2013 Nov; 47(22):12860-7. PubMed ID: 24111975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the heterogeneous photo oxidation of the pesticide bupirimate by OH-radicals and ozone under atmospheric conditions.
    Bouya H; Errami M; Chakir A; Roth E
    Chemosphere; 2015 Sep; 134():301-6. PubMed ID: 25966935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical formation of hydroxyl radicals catalyzed by montmorillonite.
    Wu F; Li J; Peng Z; Deng N
    Chemosphere; 2008 Jun; 72(3):407-13. PubMed ID: 18384836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a quantitative structure-activity relationship model for predicting quantum yield of hydroxyl radical generation from organic compounds.
    Liu Y; Chen X; Zhao J; Jin W; Zhang K; Qu J; Zhang YN; Chen G; Peijnenburg WJGM
    Environ Sci Process Impacts; 2023 Jan; 25(1):66-74. PubMed ID: 36504232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry.
    Santos LS; Dalmázio I; Eberlin MN; Claeys M; Augusti R
    Rapid Commun Mass Spectrom; 2006; 20(14):2104-8. PubMed ID: 16767687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.