These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1259135)

  • 1. Detection of asparagine and glutamine in peptides sequenced by dipeptidyl aminopeptidase I via gas chromatography-mass spectrometry.
    Young MA; Desiderio DM
    Anal Biochem; 1976 Jan; 70(1):110-23. PubMed ID: 1259135
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of asparagine, glutamine and the carboxyl-terminal amino acids in polypeptides via sequence analysis by gas chromatography-mass spectrometry.
    Nau H
    FEBS Lett; 1976 Mar; 63(1):154-8. PubMed ID: 1261676
    [No Abstract]   [Full Text] [Related]  

  • 3. The examination of the presence of amide groups in glutamic acid and aspartic acid residues of staphylococcal nuclease (Foggi strain).
    Bohnert JL; Taniuchi H
    J Biol Chem; 1972 Jul; 247(14):4557-60. PubMed ID: 4339720
    [No Abstract]   [Full Text] [Related]  

  • 4. Thin-layer chromatography on a chromatosheet coated with resin in different ionic forms for the separation of amino acid mixtures containing asparagine and glutamine.
    VĂ¡radi A
    J Chromatogr; 1975 Jul; 110(1):166-70. PubMed ID: 1133142
    [No Abstract]   [Full Text] [Related]  

  • 5. The covalent structure of a human gamma G-immunoglobulin. IX. Assignment of asparaginyl and glutaminyl residues.
    Bennett C; Konigsberg WH; Edelman GM
    Biochemistry; 1970 Aug; 9(16):3181-8. PubMed ID: 5489772
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides by gas-liquid chromatography.
    Hediger H; Stevens L; Bradenberger H; Schmid K
    Biochem J; 1973 Jul; 133(3):551-61. PubMed ID: 4733240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of methylated asparagine and glutamine residues in polypeptides.
    Klotz AV; Thomas BA; Glazer AN; Blacher RW
    Anal Biochem; 1990 Apr; 186(1):95-100. PubMed ID: 2356973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins.
    Robinson AB; Robinson LR
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):8880-4. PubMed ID: 1924347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of asparagine and glutamine in polypeptides using bis(I,I-trifluoroacetoxy)iodobenzene.
    Soby LM; Johnson P
    Anal Biochem; 1981 May; 113(1):149-53. PubMed ID: 7023274
    [No Abstract]   [Full Text] [Related]  

  • 10. The complete enzymic hydrolysis of horse muscle acyl phosphatase.
    Ramponi G; Cappugi G; Treves C; Nassi P
    Life Sci II; 1971 Sep; 10(17):983-8. PubMed ID: 4328136
    [No Abstract]   [Full Text] [Related]  

  • 11. A method for estimating free asparagine and glutamine in biological fluids as trinitrophenyl derivatives.
    Broome JD
    Nature; 1966 Aug; 211(5049):603-4. PubMed ID: 5968725
    [No Abstract]   [Full Text] [Related]  

  • 12. Direct analysis of 15N-label in amino and amide groups of glutamine and asparagine.
    Scharff-Poulsen AM; Schou C; Egsgaard H
    J Mass Spectrom; 2007 Feb; 42(2):161-70. PubMed ID: 17186571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of glutamine and asparagine in enzymatic hydrolysates of oxytocin and vasopressin.
    LAWLER HC; TAYLOR SP; SWAN AM; DU VIGNEAUD V
    Proc Soc Exp Biol Med; 1954 Dec; 87(3):550-2. PubMed ID: 13237303
    [No Abstract]   [Full Text] [Related]  

  • 14. The primary sequence of badger myoglobin.
    Tetaert D; Han KK; Plancot MT; Dautrevaux M; Ducastaing S; Hombrados I; Neuzil E
    Biochim Biophys Acta; 1974 Jun; 351(2):317-24. PubMed ID: 4407312
    [No Abstract]   [Full Text] [Related]  

  • 15. Tracing 15N with chemical reaction interface mass spectrometry: a demonstration using 15N-labeled glutamine and asparagine substrates in cell culture.
    Kusmierz JJ; Abramson FP
    Biol Mass Spectrom; 1994 Dec; 23(12):756-63. PubMed ID: 7841209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxypeptidase C.
    Tschesche H
    Methods Enzymol; 1977; 47():73-84. PubMed ID: 927201
    [No Abstract]   [Full Text] [Related]  

  • 17. Determination of free ammonium and asparagine and glutamine amide-nitrogen in extracts of plant tissue.
    Henderlong PR; Schmidt RR
    Plant Physiol; 1966 Sep; 41(7):1102-5. PubMed ID: 5954869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipeptidyl aminopeptidase I: application in sequencing of peptides.
    Callahan PX; McDonald JK; Ellis S
    Fed Proc; 1972; 31(3):1105-13. PubMed ID: 4338109
    [No Abstract]   [Full Text] [Related]  

  • 19. Applications of gas-liquid chromatography in protein chemistry. II. Determination of amide residues in nanomolar amounts of proteins.
    Davy KW; Morrris CJ
    J Chromatogr; 1977 Jun; 136(3):361-9. PubMed ID: 881444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method of distinguishing between aspartic acid and asparagine and between glutamic acid and glutamine during sequence analysis by the dansyl-Edman procedure.
    Airoldi LP; Doonan S
    FEBS Lett; 1975 Feb; 50(2):155-8. PubMed ID: 1089562
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.